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|. INTRODUCTION

e An age old question: What is a walk?
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|. INTRODUCTION

M‘wm &OM by T. McCracken

e An age old question: What is a walk?
e Also random walks, random migrations, random flights.
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Abstract

Following Pearson in 1905, we study the expected distance of a
two-dimensional walk in the plane with n unit steps in random
directions — what Pearson called a random walk or a “ramble”.

While the statistics and large n behaviour are well
understood, the precise behaviour of the first few steps is
quite remarkable and less tractable.

Series evaluations and recursions are obtained making it possible to
explicitly determine this distance for small number of steps.
Hypergeometric and elliptic hyper-closed® form expressions are
given for the densities and all the moments of a 2, 3 or 4-step walk.

Heavy use is made of analytic continuation of the integral (also of
modern special functions and computer algebra (CAS)).

1JMB & Crandall, “Closed forms: what they are and why they matter,”
Notices of the AMS, in press. See
http://www.carma.newcastle.edu.au/~jb616/closed-form.pdf
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“Birds and Frogs”’ (Freeman Dyson, NAMS 2010)

Some mathematicians are birds, others are frogs. Birds fly high in
the air and survey broad vistas of mathematics out to the far
horizon. They delight in concepts that unify our thinking and bring
together diverse problems from different parts of the landscape.
Frogs live in the mud below and see only the flowers that grow
nearby. They delight in the details of particular objects, and they
solve problems one at a time.

| happen to be a frog, but many of my best friends are birds. The
main theme of my talk tonight is this. Mathematics needs both
birds and frogs. Mathematics is rich and beautiful because birds
give it broad visions and frogs give it intricate details.

Mathematics is both great art and important science, because it
combines generality of concepts with depth of structures. It is
stupid to claim that birds are better than frogs because they see
farther, or that frogs are better than birds because they see deeper.
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“Experimental and Computational Mathematics”

Discussion. This article? is one of our favourites.

Mathematics has frequently seen alternating
periods of theory building and periods of PsiPress iBook, 2010
pathology hunting. The first without the
second leads to sterile structures save for a few
Grothendiecks. The second without the first
runs out of steam and one is left only with
something akin to a pre-Linnaean taxonomy in
which no structures are to be discerned.

Experimental and
computational
mathematics:

Selected writings

Jonathan Borwein
and
Peter Borwein

1] £éms P

In his wonderful Notices article Birds and Frogs Freeman Dyson
makes the same point forcibly and elegantly. In Dyson’s terms we
are unabashed frogs who consume the droppings of friendly birds
thereby enriching the pond'’s nutrients for future visiting birds.

2“Strange series evaluations and high precision fraud,” MAA Monthly, 1992.
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Exploratory Experimentation and Computation in

Mathematics: ... and so to have 'Fun’

e Numbers, symbols, and pictures
let us explore, refute and refine
conjectures (throughout this work).
e Even to obtain secure knowledge
in areas where formal proof is out of
reach. See:

Workshop
Program

e Presentation:
Next funding
WWw.carma.newcastle.edu. IR
au/~jb616/expexpl0.ppsx :

e Extended paper:
WWW.carma.newcastle.edu.
au/~jb616/expexp.pdf
(Notices, in press, with Bailey)
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Intro
Random walk integrals — our starting point

For complex s

Definition

n S

Wa(s) = /[0 " >

k=1

62ﬂmki

da

e W, is analytic precisely for R8s > —2.
e Also, let W,, := W, (1) denote the expectation.

Simplest case (obvious for geometric reasons):

1
Wi(s) = / ’e2ﬂim}sdx =1.
0
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo

e Mathematica 7 and Maple 13 ‘think’ the answer is 0.
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo

e Mathematica 7 and Maple 13 ‘think’ the answer is 0.

e There is always a 1-dimension reduction
Wi(s) = /
[0,1]™

N /[;]’1]n1

n

da

6271':%2
1

k=

n—1 S
1+ Z Xk d(zy, ..., 1)
k=1
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo

e Mathematica 7 and Maple 13 ‘think’ the answer is 0.

e There is always a 1-dimension reduction

Wa(s) = /
[0,1]"
— 1+ 627Tl'ki
/[;]’1]n1 kzl

e So Wy = 4f0 cos(rz)dr = 2.

27T£l2k’l dx

d(z1,...,2p-1)
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Intro

n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

3This and related talks are at ~ib616/papers.html#TALKS
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n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

e In fact, W5 =~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the use of 256 cores at the
Lawrence Berkeley National Laboratory.

e We have a general program to develop symbolic numeric
techniques for multi-dim integrals (as illustrated in JW's talk).

3This and related talks are at ~ib616/papers.html#TALKS
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Intro

n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

e In fact, W5 =~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the use of 256 cores at the
Lawrence Berkeley National Laboratory.
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Intro

n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

e In fact, W5 =~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the use of 256 cores at the
Lawrence Berkeley National Laboratory.

e We have a general program to develop symbolic numeric
techniques for multi-dim integrals (as illustrated in JW's talk).

e Most results are written up® (FPSAC 2010, RAMA, Exp.
Math). See
Www.carma.newcastle.edu.au/~jb616/walks.pdf
and www.carma.newcastle.edu.au/~jb616/walks2.pdf

When the facts change, | change my mind. What do you do, sir?
— John Maynard Keynes in Economist Dec 18, 1999.

3This and related talks are at ~ib616/papers.html#TALKS
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Intro

One 1500-step ramble: a familiar picture
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Intro

One 1500-step ramble: a familiar picture

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
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Intro

One 1500-step ramble: a familiar picture

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
e 1D or 2D lattice: probability one of returning to the origin.
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Intro

1000 three-step rambles: a less familiar picture?
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Intro

A little history — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).
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Intro

A little history — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.
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Intro

A little history — from a vast literature

/ / ' \ =7y < K
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C +— K), declined knighthood.
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Intro

A little history — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C +— K), declined knighthood.
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Intro

A little history — from a vast literature

; ))/{

/ ‘P4
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.

e UNSW: Donovan and Nuyens, WWII cryptography.
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Intro

A little history — from a vast literature

; ))/{

/ ‘P4
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.

e UNSW: Donovan and Nuyens, WWII cryptography.

e Appear in quantum chemistry, in quantum physics as hexagonal and

diamond lattice integers, etc ...
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Intro

Armin Straub’s Tulane Poster

Random Walk Integrals Tulane
Armin Straub. Joint work with Jonathan M. Borwein, Dirk Nuyens, James Wan Unlverslty

Mathematics Department, Tulane University

PPOEP@O®® ||/~ N

Explicit evaluations

and back to Analysis

- Via Carlson’s Theorem the combinatorial recurrences can be lfied to
functional equations. For instance:
(547 Wals-+4) — s+ 3)(S5+ 305+ 48)Wa(s-+2)+ 64(s 2 Wyls)

» We study random walks in the plane consisting of  steps. Each stepis of » Wils) = 1

length 1 and i taken in & randomly chosen direction. W)= \’) [R—

+ For integers & we have.

i e s

In particular, Ws(1) =

It follows that W,(s)
negative integers.
+ From (3), we have the following gencrating function:

;ﬂw, ) o = (2 w!) = J(2VE"

‘4 meromorphic function in s with poles a certain

» We areinterested in the distance traveled in n seps. For instance, how =
large is
+ Represent the ki step by the complex number ¢ Then we see that the
sth moment of the distance after 1 steps s: + For even's 2k we get integers!

s distance on average’ From where J,(z) denotes the Bessel function of the firs kind. Applying
Ramanujan’s master theorem we are led t¢

(- s/2) [

w5 =22 [ an ©
~ Formula (5, which was found by David Broadhurst, is quite suitabe for
high precision evaluations.

m Wo(2k) = (K

z. (b ®

In particular, W,(1) is the average distance after 1 steps. (k) countsthe number of abelian squares: srings x of length 2k from

15 hrd 0 cvalust namericalyt igh precision.For insiance ansphabet il eters Sl ha 1. permutaion o .
Monte Carlo itgration ives pproximations with an 4symIOtc emor ., For imdance, s ech contibres 1010
f O(1/V/N) where N is the number of sample points. »Surely: fi(k) = 1 » Inspired by (4), we conjecture that for complex s
% !
 Justa bit harder: f(K) = (A ) which can b seen from VLY ( N io-y)
babag abaab AN
»Considered in 1880 by Lord Rayleigh in the composition of n vibrations o - can b obrainec i » Coupled with (2) this gives 4 very effcient method to evaluate Wi(k) o
ey e Summaion omulac o 1 2 can be e o e conaluion s e s
Usc n 1904 by Ronuld Ros 0 model the disersion o moscuitoes RRCVR
* Frthr studied by KarlParson J. C. Kluyve,and many ofhers: ral®) =3 ) 50l =) “ .
articularly successful, for instance, in the context of random migration elerence:
:?r'.‘,m.,.,).wmn.m e erat + The machinery of combinatorics ensures recurrences for fixed . For J. Borvein, D. Nuyens, A. Straub, and 1. Wan. “Random walk integrals.”
» While W, is well understood for large n, there is still much interest in the N s N Bl <8 B e
While W s v b 2Pk 2)~ 202k 43S 158+ 12k 1)+ 65061 lk) ~0

“This work was supported by an IBM Fellowship in Computational Scicnce.

| s=3 | s
2[T2752] 330531 108650

241544
213
5[200816{14.2896 152316 [2037.14
6[219386[189133 245750 [1186.19  [52718.9

10 Stoue
57 Fo00%5
o| 4553 p002035
31504 2002035 n

5127905
Wals) Wils) Wils) Wls) Wels)

Mathematics Department - Tulane University - New Orleans, USA. Mail: astraub@tulane . edu

Short Random Walk
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Intro

James Wan's Three Minute Thesis

Computer Assisted Mathematical Analysis and Number Theory

James Wan
Example (Random Walks)

Take n steps on a flat surface, each of length 1 and chosen in a random
direction. What is the average distance to the starting position?

@ We recast the problem as a high dimensional integral.

1,6
@ 2-step average = %. 3-step average = 18 Yin? + L) 1.574597

r(3)°® 8 Vant
. K_}V\ \
s o b ) T , 5 b‘ ﬁ, 5
2-step 3step 4-step

Zs o — — o

Several 4-step walks

A 500-step walk

5.step Bstep T step
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Intro

|. COMBINATORICS

' BOOK -POST

FIRST DAY COVER

BY AIR MAIL

PAR AVION

/fa]( ;/)»n‘v.'D BOR WE /N,
Dept- tf Mathomata,
"rlu_u‘,;mé)‘ ) Kt Adrear,
.
10 Wedt Aereq

L. ANDREWS, SCOTLAND

INDIAN POSTS & TELEGRAPHS ‘U K

S Ramanujan
1887-1920
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Intro

COMBINATORICS

' BOOK -POST

FIRST DAY COVER

/fa]( ,./)»»?v.'D BOR WE /N,
viD‘-P’ < .,'?’_ Ma Bomakier,
‘?;u_u‘,;m‘e)‘ ) Kt Adrear,
.
10 Wedt Aereq
L. ANDREWS, SCOTLAND
INDIAN PQSTS & TELEGRAPHS 'WU K

S Ramanujan
1887-1920

| am planning a 2012 celebration when my favourite frog turns
125 =53 =112 +22 =102+ 52 = 152 — 10* =
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Combinatorics

W, (k) at even values

Even values are easier (combinatorial — no square roots).

(k[of2]4 [6 [8 [10 |
126 |20 |70 |25
315|093 | 639 | 4653
428 | 256 | 2716 | 31504
5 | 45 | 545 | 7885 | 127905

Sy

SEEE
—~| [
\_/S\_/\_/

o
===

e Can get started by rapidly computing many values naively as
symbolic integrals.
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Combinatorics

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|k [of2]4 |6 [8 [10 |
Wa(k) [1]2]6 |20 |70 | 252
Wi(k) | 1] 3] 15|93 | 639 | 4653
Wa(k) | 1|4 | 28 | 256 | 2716 | 31504
Ws(k) | 1|5 | 45 | 545 | 7885 | 127905

e Can get started by rapidly computing many values naively as
symbolic integrals.

e Observe that Wy(s) = (;2) for s > —1.
o MathWorld gives W,,(2) = n (trivial).
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Combinatorics

W, (k) at even values

Even values are easier (combinatorial — no square roots).

(k [of2]4 |6 [8 |10 |
Wak) [1]2]6 |20 |70 | 252
Wi(k) | 1] 3] 15|93 | 639 | 4653
Wa(k) | 1] 4|28 256 | 2716 | 31504
Ws(k) | 1|5 | 45 | 545 | 7885 | 127905

e Can get started by rapidly computing many values naively as
symbolic integrals.

Observe that Wh(s) = (;2) for s > —1.

MathWorld gives W;,(2) = n (trivial).

Entering 1,5,45,545 in the OIES now gives “The function
W5(2n) (see Borwein et al. reference for definition).”
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Combinatorics

W, (k) at odd integers

inlk=1 |k=3 |k=5 |k=7 |k=9 |
2 [ 1.27324 | 3.39531 | 10.8650 | 37.2514 | 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O ~W
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Combinatorics

W, (k) at odd integers

inlk=1 |k=3 |k=5 |k=7 |k=9 |
2 [ 1.27324 | 3.39531 | 10.8650 | 37.2514 | 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O ~W

Memorize this number!
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Combinatorics

W, (k) at odd integers

(k=1 |k=3 |k=5 [k=T7 [k=9
1.27324 | 3.39531 | 10.8650 | 37.2514 [ 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

OO AWIN|S

Memorize this number!

During the three years which | spent at Cambridge my time was wasted, as far as the academical
studies were concerned, as completely as at Edinburgh and at school. | attempted mathematics,
and even went during the summer of 1828 with a private tutor (a very dull man) to Barmouth, but
| got on very slowly. The work was repugnant to me, chiefly from my not being able to see any
meaning in the early steps in algebra. This impatience was very foolish, and in after years | have
deeply regretted that | did not proceed far enough at least to understand something of the great
leading principles of mathematics, for men thus endowed seem to have an extra sense. —

Autobiography of Charles Darwin
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Combinatorics
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

Wa@k) = 3 (al,.]ia)Q' (1)

a1+...+an==k
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Combinatorics
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

s 2t

e Known to satisfy convolutions:
k k 2
Worins(2) = 3 (5) Wi~ ), s

J=0

Wa(2k) = 35 () CEN),60)* () = 2, (5 S, CO ) (0)* ()
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Combinatorics
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

s 2t

e Known to satisfy convolutions:
k

k 2
Warns () = 3 () W (2000200 = ), 0
j=0
Ws(2k) = 5, ()" CED) S0 () = () S 9 () ()
e and recursions such as:
(k+2)2Ws3(2k+4)— (10,2 +30k+23) W5 (2k+2)4+9(k+1)>W3(2k) = 0.
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Combinatorics

A binomial expansion of W, (s)

n
eQﬂxki

S

e Recall W,(s) :=/ de.

[0,1]"

k=1
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Combinatorics

A binomial expansion of W, (s)

n S

dx.

eQﬂxki

e Recall W,(s) :=/

[0,1]"
Z e271'xki
k

k=1

2
=n?— 4Zsin2(7r(xj — ;).

1<j
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Combinatorics

A binomial expansion of W, (s)

n S

dx.

eQﬂxki

e Recall W,(s) :=/

[0,1]"
Z e271'xki
k

e Binomial expansion:

Wls) =n* 3 % (Sz) /[071]71 (4Zsin2(7'r(xj _ zi)))md.’v

m=0 i<j

- ~/

k=1

2
=n?— 4Zsin2(7r(xj — ;).

1<j

::In,m
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Combinatorics

A binomial expansion of W, (s)

S

dx.

Recall W,,(s) ;:/ 2Ty

[0,1]"

=1

=n —4Zsm x;))-

1<j

27Txkl

Blnomlal expansion:

w5 S (1), (g )

m=0 1<j

- ~/

::In,m

Experimentally we found recursion for I3, ...

JMB/JW Short Random Walks



Combinatorics

Our conjectural route . ..

e Looked up I3, on Sloane's OEIS (as on next slide) get
1,6,42, 312, 2394, 18756, 149136, . . .
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Combinatorics

Our conjectural route . ..

e Looked up I3, on Sloane's OEIS (as on next slide) get
1,6,42, 312, 2394, 18756, 149136, . . .

e A093388 (H. Verill, 1999) is that I3, is coefficient of
(xyz)™ in

Bryz — (x+y)(y + 2)(z + 2))"
= (32:Uyz —(r+y+2)(rvy +yz+ Zx))m
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Combinatorics

Our conjectural route . ..

e Looked up I3, on Sloane's OEIS (as on next slide) get
1,6,42, 312, 2394, 18756, 149136, . . .

e A093388 (H. Verill, 1999) is that I3, is coefficient of
(xyz)™ in

(8zyz — (x +y)(y + 2)(2 + 2))™
= (Bzyz— (x+y+2)(ay +yz +22))"
e Guessed I, ,,, is constant term of

(n® — (z1+ ...+ a) (/a1 + ...+ 1z))"
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Combinatorics

Our conjectural route . ..

e Looked up I3, on Sloane's OEIS (as on next slide) get
1,6,42, 312, 2394, 18756, 149136, . . .

e A093388 (H. Verill, 1999) is that I3, is coefficient of
(xyz)™ in

(8zyz — (x +y)(y + 2)(2 + 2))™
= (Bzyz— (x+y+2)(ay +yz +22))"
e Guessed I, ,,, is constant term of

(n® — (z1+ ...+ a) (/a1 + ...+ 1z))"
e Led to the conjecture:
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Combinatorics

Our conjectural route . ..

e Looked up I3, on Sloane's OEIS (as on next slide) get
1,6,42, 312, 2394, 18756, 149136, . . .

e A093388 (H. Verill, 1999) is that I3, is coefficient of
(xyz)™ in

(Bzyz — (z +y)(y + 2)(z + 2))"
= (Bzyz— (x+y+2)(ay +yz +22))"
e Guessed I, ,,, is constant term of
(n® — (z1+ ...+ a) (/a1 + ...+ 1z))"
e Led to the conjecture:

Wa(s) =n* 3" (-1)™ (;) ki_o (;if (7:) > ) (al, kan>2

m>=0 Sa;=

()
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as/sequences.

Greetings from ]]m_Qn_ng_Ens;y_cLepﬂa_o_f_lntgugL&qugnm'

[1642,312.2304 |

Search: 1, 6, 42, 312, 2394

Displaying 1-1 of 1 results found. page 1
Format: long | short | intemal | fext  Sort: relevance | references | number

A093388 (n+1)"2a_{n+1} = (17nA2+17n+6) a_n - 72n"2 a_{n-1}. =
1, 6, 42, 312, 2394, 187 1199232, 9729882, 7
4 1608! 375002110944, 31411073 39328, 6402533581312, it

1380284, 15967419789558804, 135752058036388848, 11”3390:024,_3;3644 (list; graph;

54088

527084,
3!

18828828

listen)

OFFSET. 0,2

COMMENT This is the expansion of a special point on a curve described by
Beauville.

REFERENCES Arnaud uville, T amilles stable

admettant quatre
aris, no. 294, May

s, Comptes Rendus,

fibres singuli
198

curvs

Over 6 families van krommen [On 6

ublished), Aug 26 1983

LINKS , y
me ‘congruences related to medular form .
FORMULA (LA SUR (K=0) O BLHGHIAL (B, K) ¥ (-8) K % SUm {j=08 i) binomial (n-
X, Jw - Relena Verrill (verrill (AT)math.lsu.ed), Aug 09 2004
MAPLE local m; if then RETURN (1) ;
i ((17*m*2+17*m+6) * 1272w |
PROGRAM k=0, n, binomial(n, k)*(-8) k*sum(j=0, n-k,
CROSSREFS quence in the family beginning AD02894, A006077,
2002893,
A ? ADO1151 A004982 this
093385 AD93386 AQ93387 this_sequence AU93389 AQ93390
2093391
KEYWORD nonn
AUTHOR Matthijs Cos (matthijs (AT) coster.demon.nl), Apr 29 2

page 1

Search completed in 0.003 seconds
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www.research.att.com/~njas/sequences

Combinatorics
... and proof

e Needed to show

Lo 2 /O - ( 3 sin(n —ti)))mdt

is the constant term of

(n2 — (7 +...+xn)(1/1‘1 +...+ 1/xn))m =

(Ze5-2))-(5=)

1<)
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Combinatorics
... and proof

e Needed to show

Lo 2 /O - ( 3 sin(n —ti)))mdt

is the constant term of
(n? — (@14 ...+ 2p) /21 + ..+ Lzy))" =

(Ze5-2))-(5=)

1<] 1<J

e To preserve symmetry, we did not use the dimension reduction.
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Combinatorics
... and proof

e Needed to show

Lo 2 /0 - ( 3 sin(n —ti)))mdt

is the constant term of

(n? — (@14 ...+ 2p) /21 + ..+ Lzy))" =

(Ze5-2))-(5=)

1<J 1<J
e To preserve symmetry, we did not use the dimension reduction.

e Now expanded the m-th power on both sides, and amazingly
corresponding terms are equal. So (2) holds. QED
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e So W, satisfies an |41 |-term recursion and can be given by
| 43 distinct iterated sums:
For instance

o =S CED DB

j=0

DEECMIHICI NG

u
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e So W, satisfies an L”T‘Hj—term recursion and can be given by

L"TJ“?’J distinct iterated sums:
For instance

(G B0 ) 00
(50 65 50 0)

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

W3

<
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e So W, satisfies an L”T‘Hj—term recursion and can be given by

L"TJ“?’J distinct iterated sums:
For instance

() EEE) 20

()50 (£ E)

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

W3

<

e Tanh-sinh (doubly-exponential) quadrature works well for W3
but not so well for Wy =~ 1.79909248.
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e So W, satisfies an L”T‘Hj—term recursion and can be given by

L"TJ“?’J distinct iterated sums:
For instance

() EEE) 20

()50 (£ E)

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

W3

<

e Tanh-sinh (doubly-exponential) quadrature works well for W3
but not so well for Wy =~ 1.79909248.

¢ Quasi-Monte Carlo was not very accurate (JW's prior talk).
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Combinatorics
Binomial Transform

Theorem (binomial involution)

Given real sequences (ay,,) and (s;), the following are equivalent:
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Combinatorics
Binomial Transform

Theorem (binomial involution)

Given real sequences (ay,,) and (s;), the following are equivalent:

We can now give a proof of the even formula (1). Apply

W (24) =n" > (=1)™ Ci) i (;y <1Z> > . (al, kan>2

and appeal to the involution. QED
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Combinatorics

[11. ANALYSIS

Midtalk test: Who are we? Answers later!
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Analysis

Carlson’s theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for R(z) > 0, its growth on the imaginary axis is
bounded by e, |c| < m, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.
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Analysis

Carlson’s theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for R(z) > 0, its growth on the imaginary axis is
bounded by e, |c| < m, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for R(s) > —2 when n > 2).
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Analysis

Carlson’s theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for R(z) > 0, its growth on the imaginary axis is
bounded by e, |c| < m, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for R(s) > —2 when n > 2).

e There is a lovely 1941 proof by Selberg of the bounded case.
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Analysis
Analytic continuation

e So integer recurrences yield complex functional equations. Viz

(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)*W3(s) = 0.
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Analysis
Analytic continuation

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)*W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems|, some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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Analysis
Analytic continuation

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)*W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

e Ws(s) has a simple pole at —2 with residue and other

_2
) : . . Vi’
simple poles at —2k with residues a rational multiple of Res_s.

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems|, some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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Odd dimensions look like 3

Ws(s) on [—6, %]

3

e JW proved zeroes near to but not at integers: W3(—2n — 1) | 0.
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Odd dimensions look like 3

Ws(s) on [—6, %]

3

e JW proved zeroes near to but not at integers: W3(—2n — 1) | 0.
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Analysis

Some even dimensions look more like 4

W

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
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Analysis

Some even dimensions look more like 4

0 R R

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0
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Analysis

Some even dimensions look more like 4

0 R R

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0

e There are (infinitely many) multiple poles if and only if 4|n.
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Analysis

Some even dimensions look more like 4

0 R R

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s+4)°Wi(s+4) — 4(s+3)(55° + 30s + 48)Wa(s + 2)
+ 64(s+2)°Wy(s) =0
e There are (infinitely many) multiple poles if and only if 4|n.
e Why is Wy positive on R?



A discovery demystified

In particular, we have now shown that

Waek) = Y ( k >2:3F2<1/2,—k,—k:‘4>

ai,as,a 1,1
a1+astas=Fk 1,d2,043 )

=:V3(2k)
where , I, is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459 — .12602652i

Theorem (Real part)
For all integers k we have Ws(k) = R(Va(k)). J
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A discovery demystified

In particular, we have now shown that

Eoo\? 1/2,—k, —k
2k) = = 3F: ’ ’ 4
Ws(2k) Z (al,az,a3> ° 2< 1,1 ‘ >

a1+az+az=k

—:V3(2k)

where , I, is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459 — .12602652i
Theorem (Real part)

For all integers k we have Ws(k) = R(Va(k)). J

We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea first.

... So there isn't any place to publish, in a dignified manner, what you
actually did in order to get to do the work. — Richard Feynman (Nobel
acceptance 1966)



Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

1 r1
Wg(l) — /(; /O ‘1+€27rzx+e27rzy|d$dy

- /1 /1 V4sin(2rt) sin(27(s + t/2)) — 2 cos(2xt) + 3 dsdt.
0 0
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Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

1 r1
Wg(l) — /(; /O ‘1+62wzx+e2ﬁzy|d$dy

- /1 /1 V4sin(2rt) sin(27(s + t/2)) — 2 cos(2xt) + 3 dsdt.
0 0

e Let s+1¢/2 — s, and use periodicity of the integrand, to obtain

W3 = /0 1 { /0 1 /4 cos(2ms) sin(nt) — 2 cos(27t) + 3 ds} dt.

The inner integral can now be computed because

/OmdzszQ/%)
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Analysis
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) := /(:/2 \/1 — 22sin?(t) da.

o After simplification,

/2 sin
= [ st 0z (RS a
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Analysis
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) := /(:/2 \/1 — 22sin?(t) da.

o After simplification,

4

w/2
W3 = —2/0 (2sin(t) + 1)E (

T 1 + 2sin(t)

2,/2sin(t) ) y

Now we recall Jacobi's imaginary transform,

(z+1)E (j\ﬁ) — R(2E() - (1 - 2)K(2)

and substitute. Here K (x) is the elliptic integral of the first kind.
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Analysis
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) := /(:/2 \/1 — 22sin?(t) da.

o After simplification,

4

w/2
W3 = —2/0 (2sin(t) + 1)E (

T 1 + 2sin(t)

2,/2sin(t) > y

Now we recall Jacobi's imaginary transform,

(@ +1)E ( 2V ) — RQ2E(z) — (1 - 2%)K ()
z+1
and substitute. Here K (x) is the elliptic integral of the first kind.
e This is where R originates:
e eg., Va(—1) =0.896441 — 0.517560:, W3(—1) = 0.896441.
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (3)
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (3)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (4)
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (3)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (4)

e k= —1. A similar (and easier) proof obtains for W3(—1).
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

/2 m)2 — 2a?sin?(t) sin®
[ [ i),
. V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (3)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (4)

e k= —1. A similar (and easier) proof obtains for W3(—1).
e As both sides satisfy the same 2-term recursion (computer
provable), we are done. QED
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Analysis

A pictorial ‘proof’ shows Carlson’s theorem does not apply

Ws(s) — RV3(s) on [0,12]

/\/\/\/\/\

0402

=i
7
ol
<
<

M
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Analysis

A pictorial ‘proof’ shows Carlson’s theorem does not apply

Ws(s) — RV3(s) on [0,12]

/\/\/\/\/\

0402

=i
7
ol
<
<

M

e This was hard to draw when discovered, as at the time we had
no good closed form for W3 (computational or hyper-closed).
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Analysis
Closed forms

e We then confirmed 175 digits of

Ws5(1) ~ 1.57459723755189365749 . . .
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Analysis
Closed forms

e We then confirmed 175 digits of
Ws5(1) =~ 1.57459723755189365749 . . .

e Armed with a knowledge of elliptic integrals:

16472 3T(1)0 6/m2
W0 = Fg g =0
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Analysis
Closed forms

e We then confirmed 175 digits of
Ws5(1) =~ 1.57459723755189365749 . . .

e Armed with a knowledge of elliptic integrals:

1647 6 6/m>
Ws(1) = ré)ﬁ + 8\}7)74 W3(—1)+—W3/( 7
3046 23 1
Wa(—1) = o = 58 (3)
Here 5(s) := B(s,s) = %

e Obtained via singular values of the elliptic integral and
Legendre's identity.
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Analysis

Meijer-G functions (1936 )

Definition

mm [ G15---;Qp ._L
Gra (bl,...,bq x) =

/ —s) [ T(A—aj+5)
x’ds.
H] n+1

) ?:m—‘,—l F(l - b] + 3)
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Analysis

Meijer-G functions (1936 )

Definition

al,...,0Q 1
G- P = —X
P (bl,...,bq x) o

/ —s)[[[- P —a;+s) |
G x°ds.
H] n+1 ) j=m+1 F(l B bj + 3)

e Contour L chosen so it lies between poles of T'(1 — a; — s)
and of I'(b; + s).
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Analysis

Meijer-G functions (1936 )

Definition
mon (G- Qp .:L
pa (bl,...,bq x) 2mi
=)o Tl —aj+s) |
/ G z°ds.
H] n+1 8) j=m+1 F(l - b] + 3)

e Contour L chosen so it lies between poles of T'(1 — a; — s)
and of I'(b; + s).

e A broad generalization of hypergeometric functions —
capturing Bessel Y, K and much more.
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Analysis

Meijer-G functions (1936 )

Definition

al,...,0Q 1
G- P = —X
P (bl,...,bq x) o

/ —s)[[[oi T —aj+s)
G x’ds.
H] n+1 8) j=m+1 F(l - b] + 3)

e Contour L chosen so it lies between poles of T'(1 — a; — s)
and of I'(b; + s).

e A broad generalization of hypergeometric functions —
capturing Bessel Y, K and much more.

e Important in CAS, they often lead to superpositions of
hypergeometric terms.
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Analysis

Meijer-G forms for W3 and W,

Theorem (Meijer form for W)

For s not an odd integer

Ws(s) =
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Analysis

Meijer-G forms for W3 and W,

Theorem (Meijer form for W)
For s not an odd integer
Tra+3

W)= ATy

Q
A
N[
ul -
[Nl VY \.I—\
\.l .
[NS] VA

e First found by Crandall via CAS.
e Proved using residue calculus methods.
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Analysis

Meijer-G forms for W3 and W,

Theorem (Meijer form for W)

For s not an odd integer

e First found by Crandall via CAS.

e Proved using residue calculus methods.

e Wi3(s) is among the first non-trivial higher order Meijer-G
function to be placed in closed form.
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Analysis

Meijer-G forms for W3 and W,

Theorem (Meijer form for W)

For s not an odd integer

I+ 3 21 1
R Rt

~—

[Nl IvY

e First found by Crandall via CAS.

e Proved using residue calculus methods.

e Wi3(s) is among the first non-trivial higher order Meijer-G
function to be placed in closed form.

The most important aspect in solving a mathematical problem is the
conviction of what is the true result. Then it took 2 or 3 years using the
techniques that had been developed during the past 20 years or so. —
Lennart Carleson (From 1966 IMU address on his positive solution of

Luzin's problem).
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Analysis

Meijer-G form for W,
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Analysis

Meijer-G form for W,

Theorem (Meijer form for W)
For Rs > —2 and s not an odd integer

25T(1+ % 1,211
WaGs) = ZL0LD §)Gii(1 :

JMB/JW Short Random Walks



Analysis

Meijer-G form for W,

Theorem (Meijer form for W)
For Rs > —2 and s not an odd integer

e Not helpful for odd integers. We must again look elsewhere ...
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Analysis

Meijer-G form for W,

Theorem (Meijer form for W)
For Rs > —2 and s not an odd integer
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Analysis

Meijer-G form for W,

Theorem (Meijer form for W)
For Rs > —2 and s not an odd integer

He [Gauss (or Mma)] is like the fox, who effaces his tracks in the
sand with his tail— Niels Abel (1802-1829)
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Analysis

Visualizing Wy in the complex plane
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Analysis

Visualizing Wy in the complex plane

-6 -4 -2 0 2

e Easily drawn now in Mathematica from the the Meijer-G
representation.
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Analysis

Visualizing Wy in the complex plane

-6 -4 -2 0 2

e Easily drawn now in Mathematica from the the Meijer-G
representation.

e Each point is coloured differently (black is zero and white
infinity). Note the poles and zeros.
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Analysis

IV. PROBABILITY

It can be readily shown that

©

P () = f oIt [ 1" oy (1.2)

o

where J {y) is the Bessel function of the first kind of order k. Pearson tabu-
lated F(r)/2 for n 7, for r renging between O wd n {all that is nec-
essary). He used a graphical procedure in getting his results, and remarked that
for n =5 the function a‘ppeal‘ed to be constant over the ramge between 0 and 1.
He states; ‘From =0 to r=L (here 1) the graphical construction, however
carefully reinvestigated, did not permit of our considering the curve to be anything

but a straight line. . . . Even if it is not absolutely true, it exemplifies the

extraordinery power of such integrals of J products to give extremely close ap-

H.E. Fettis (1963)

u .
and more recently Scheid (Reference [5]) gave results for lower values of n (2 to 6) On a []‘906] ConJeCture

. "
obteined by a Monte Certo procedure. lhe function Fy(r) was computed for r <1 of Pearson.
on the Remington-Rand 1103 computer. The results are given in Table 1, and although

proximations to such simple forms as horizontal lines.'

Greenwood and Duncan (Reference (4]) later extended Pearson’ s work for n=6(1)24,

the function is not constant, it differs from 1/3 by less than 0034 in this range.

This settles Pearson's conjecture. The table given on page 51 may help investiga-

tors of Monte Carle techniques to compare their results with the known values,
JMB/ Short Random Walks



Probability
Alternative representations

In 1906 the influential Leiden mathematician J.C. Kluyver
(1860-1932) published a fundamental Bessel representation for the
cumulative radial distribution function (P,,) and density (p,,) of the
distance after n-steps:

P,(t)=t /000 Ji(zt) Jy (x) dx

pu() =t /0 T o) S @)z de (0> 4) (6)

where J,,(z) is the Bessel J function of the first kind (see Watson
(1932, §49); 3-dim walks are elementary).

e From (8) below, we find

pn(1) = Res—g (Wi41) (n #4). (7)
o As po(a) = m/iT’ we check in Maple that the following

code returns R = 2/(\/3m) symbolically:

R:=identify(evalf[20] (int (BesselJ(0,x) "3*x,x=0..infinity)))



Probability

A Bessel integral for W,
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Probability

A Bessel integral for W,

e Also P,(1) = %)HH = ﬁ (Pearson'’s original question).

+
—
3
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Probability

A Bessel integral for W,

e Also P,(1) = % = n%rl (Pearson'’s original question).

 Broadhurst used (6) to show for 2k > s > —% that

L1+35) [ 1d\*
Wn(s)=2s+1—kM / g2hms—l <—d> Jo(z)d,
0

L'(k—3) x dx

(8)

a useful oscillatory 1-dim integral (used below). Thence

[e.e] o0 d
Wn(-1) = / Ji(z)dz, W,(1)=n / J1($)Jo(a7)”_1§.
0 0

""‘A\\ (9)
F S Integrands for Wy(—1) (blue) and

| Y Wa4(1) (red) on [m, 47] from (9).

P
g 5 ' 83 .
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Probability

The densities for n = 3,4 are modular

Let o(x) := i’jr—i Then o is an involution on [0, 3] sending [0, 1] to [1, 3]:
4
p3(z) = mm(a(aﬁ» (10)

So %pg(O) =p3(3) = 2—‘/3,]3(1) = 00. We found:

The densities p3 (L) and ps (R)

Y
r{\ o /

oY
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Probability

The densities for n = 3,4 are modular

Let o(x) := i’jr—i Then o is an involution on [0, 3] sending [0, 1] to [1, 3]:
Pi(@) = Gy o)) (10)

So 2p4(0) = p3(3) = T@,p(l) = 0o. We found:
pale) = %Qﬂ (;13 M) N 277£AG3(3+042,:(1 “aayrsy

where AGg is the cubically convergent mean iteration (1991):

u2+ab+b2)1/3

®(r =
The densities p3 (L) and ps (R)

AG3(a,b) :=

a+ 2b
3

Y
r{\ o /

oY
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Probability

Formula for the ‘shark-fin' p4 (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (12)

pa(a) = 507
26 108 a4

2 o

)

) < p4 from (12) vs 18-terms of empirical
| power series
_ 23 26 _
v Proves py4(2) = W L) "=
VB (1) ~ 0.494233 <

e Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0,2] as well:
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Probability

Formula for the ‘shark-fin' p4 (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (12)

pa(a) = 527
26 108 a4

2 o

)

< p4 from (12) vs 18-terms of empirical
1 power series
_ 23 26 _
v Proves py4(2) = W L) "=
VB (1) ~ 0.494233 <

e Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0,2] as well:

o3
—(16_3) > (13)

Discovering this R brought us full circle.
JMB/JW Short Random Walks

pi(a) = —

~J
[N}
>
el
o
)
=3
w
&
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N =
N =




Probability

The densities for 5 < n < 8 (and large n approximation)

Lo 035 7\
03sf ~ /
D 030 /
030fF N / \
\ 3\
y g/ A\
02sF / N 025 y A\
: \
P \ p \
00f A\ 020 y A\
/ A \\
ok 015 \
P 3
1 A
010F 0.10
00sF 005
1 2 3 4 5 1 2 3 4 5 6
L 030
030fF 4 N\ 7
// v // N
4 A\ 025fF p A
[ p 3 y A\
N
R 020 “\
020F ) )
3\ 3\
3\ )
0150 \ 01sf A
N 3
o100 \ 010F
00sf 005
1 2 3 4 5 6 7 2 4 6 8
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Probability

The densities for 5 < n < 8 (and large n approximation)

Lo 035 N\
03k ~ ¥
N 030 .
030f N /7 N\
y N 025 / 3

0250 y N /1 R

/, \\ 020 y \\
020f N ¥, \

/ N \\
ossf 015 \
p 3
010F 0.10
005, 005
1 2 3 4 5 1 2 3 4 5 6

e Both poy, 44, Pant5 are n-times continuously differentiable for z > 0
2 i, - " oo - "
(pn(x) ~ 2,,—1%*“5 /m, So “four is small” but “eight is large.
L 030
0.30F 4 N //
/ \\ 025f / N
0251 p, \\ // \\
020F \\ 020 \\
01sf \\ 015¢ \\\
0.10F \\ 0101
005} 005,
I P PR T S 2 3 B s
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Probability

Simplifying the Meijer integral

e We (humans and computers) now obtained:
Corollary (Hypergeometric forms for noninteger s > —2)
g 2 111 4 g s _s _s|1
W _ P 20202 |1 <)F z0—2) =5 |1
= () () o (b 1)+ (o (5557
and
3 111 s 1 _s _s _s
Wy(s) = o (E> (Si1> 4F3 <52732’52+’32 ::_13 ‘1) + <z>4FS (2’ 2> 52_’1 2 1)
2 2 2 "2 2 2 L1, -5
v
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Probability

Simplifying the Meijer integral

e We (humans and computers) now obtained:
Corollary (Hypergeometric forms for noninteger s > —2)
g 2 111 4 g s _s _s|1
W _ P 20202 |1 <)F z0—2) =5 |1
= () () o (b 1)+ (o (5557
and
3 111 s 1 _s _s _s
Wy(s) = o (E> (Si1> 4F3 <52732’52+’32 ::_13 ‘1) + <z>4FS (2’ 2> 52_’1 2 1)
2 2 2 "2 2 2 L1, -5
v
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Probability

Simplifying the Meijer integral

e We (humans and computers) now obtained:

Corollary (Hypergeometric forms for noninteger s > —2)

1 TS s 3 1 s
Wals) = ogtan{ o ) lac1 ) 43| o4a o43 sqa|t) (s
2 2 0 2 7 2 2

N R R AT
Wi-D) = Top (VT T T} 7
6
4 111,111 4 = 467,
7" lyl,,,,ylyl ™ §s§7§7§7§v§
776F52222221+76F52222221
4 1,1,1,1,1 64 2,2,2,2,2
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Probability

Simplifying the Meijer integral

e We (humans and computers) now obtained:

Corollary (Hypergeometric forms for noninteger s > —2)

- _ 1 s s 2 & %,%,%
3(s) = o tan | s-1) 372 | g5 ats

and

)
|

1 TS El 3 ) ’%’%J’_l s %’_2, %7
Wy(s) = POF tan (?> (S_1> 4F3 < 3 s+3 s+43 ‘1 + <§>4FS i1, =21
2 2 02 0 2 2 2

[N

© ol

e We (humans) were able to provably take the limit:
@n+1)(30)°

-
)=1 S e

™ 353535333
Wa(e1) = ™ o Fg
=D 4 ,1,1,1,1,1

e We have proven the corresponding result for Wy (1)
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

o o (1355553 AN
W 1 — —F ) b b b b b 1 _2 F b ) b b b b 1
1) O 899911 el L1
o] n\ 6
EZ A(n 4+ 1)* —144(n + 1)® +108(n + 1)2 = 30(n + 1) + 3 (*")
4 = (n+1)3 46n
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
W4(1) — _7F6 432 22222212121 —27T7F6 41212121212121
RE) 47ty b
6

>N 64(n + 1)1 — 144(n + 1)3 +108(n +1)2 = 30(n + 1) +3 (°)
z:: (n+1)3 46n "

Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

1

JMB/JW Short Random Walks



Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
W4(1) — _7F6 432 22222212121 —27T7F6 41212121212121
RE) 47ty b
6

>N 64(n + 1)1 — 144(n + 1)3 +108(n +1)2 = 30(n + 1) +3 (°)
z:: (n+1)3 46n "

Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

1
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
Wil = T plT222222)) _9 p (14222222222
4(1) 470\ 2929911 el L1
0o n\ 6
Ty 64(n+ 1)* — 144(n + 1) +108(n + 1)2 = 30(n + 1) + 3 (*")
1 3 6n °
14 (n+1) 4
e Proofs rely on work by Nesterenko and by Zudilin. Inter alia:
1 1 a4 5111111
2 Kdek:/K’dek:(—> Fo[ P22z,
\/O ( ) 0 ( ) 2 e %7171a1,1,1
e We also deduce that (K’,El are complementary integrals)

8 R 96 1, ’
Wy(-1) = Trig/o K*(k)dk W4(1) = 7773/0 E' (k)K" (k)dk — 8 W4(—1).
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

9r 7333111 5111111
Wil = T plT222222)) _9 p (14222222222
4(1) 170\ 8990911 TR L1,

0o n\ 6
Ty 64(n+ 1)* — 144(n + 1) +108(n + 1)2 = 30(n + 1) + 3 (*")
1 3 6n °

4 = (n+1) 4
e Proofs rely on work by Nesterenko and by Zudilin. Inter alia:
1 1 4 5111111

2/ K(k)Qdk:/ K’(k)Qdk:(f> 72 B A I

0 0 2 Zvlvlal,l,l
e We also deduce that (K’,El are complementary integrals)

8 R 96 1, ’
Wy(-1) = Trig/() K*(k)dk W4(1) = 7773/0 E' (k)K" (k)dk — 8 W4(—1).

Much else about moments of products of elliptic integrals has
been discovered (with massive 1600 relation PSLQ runs)
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Probability
Final refinements

Theorem (Moments of 1W3)

(a) Fors+# —3,—5,—7,... , we have
35+3/2 1 1 542 512 524
Ws(s) = SsHo) s 20222 |2,
3(8) = —5; 5(5+2’3+2) 352 1,543 |4

(b) For every natural number k = 1,2, ...,

2k) 2 111
W(_Qk_l):\/g(k) F2 27272 1
s 2+ 32N\ |41 k4 1]4 )"
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Probability
Final refinements

Theorem (Moments of 1W3)

(a) Fors+# —3,—5,—7,... , we have
35+3/2 1 1 542 512 524
_ 1 2\ LB 2020 2 |2]
Wals) = =5, 5(5+2’3+2) 352 1,543 |4

(b) For every natural number k = 1,2, ...,

2
" VEGY' L hhi |
— 259259
3(=2k = 1) = oige o2 <k+ 1,k + 1‘1) ’

Likewise, we may improve (5) and show for all s,

3
225+1 24 ( 1,171’%

2 s+2\2 4,4\ s+2 s+2 s+2 1
T2 I(552) 20207202

Wy(s) =
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Probability
Derivative values also follow

From the hypergeometric forms of the corollary we get:

)-reG)

The last equality follows from setting § = /6 in the identity

1 111
Wé(o):;3FQ 2§2§2
272

111
25sin(0)3 (2;2;2 sin? 9) = C1(26) + 201og (25sin )
202
and L1
4 _7_7_71 7C(3)
Wli(o) - _24F3 <2§2§2§ ‘1) = o2 (17)
2:2772

Here C1(0) := > o2 Sinrane) is Clausen’s function. Likewise:

JMB/JW Short Random Walks



Probability
Derivative values also follow

From the hypergeometric forms of the corollary we get:

)-reG)

The last equality follows from setting § = /6 in the identity

1 111
Wé(o):;3FQ 2§2§2
272

111
25sin(0)3 (2;2;2 sin? 9) = C1(26) + 201og (25sin )
202
and L1
4 _7_7_71 7C(3)
Wli(o) - _24F3 <2§2§2§ ‘1) = o2 (17)
2:2772

Here C1(0) := > o2 Sinrane) is Clausen’s function. Likewise:

Wi(2) = 201(
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Probability

V. OPEN PROBLEMS

Who are we? Answers (clockwise) FD, AB, JvN, EW, HW, YM
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Open Problems

Open problems (Mahler measures, 1)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1,1 1 ' '
u(P) ::/ / / log | P (627"91,-..,eZ‘m%)ydelmden.
0 0 0
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Open Problems

Open problems (Mahler measures, 1)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1,1 1 ' '
u(P) ::/ / / log | P (627"91,-..,eZ‘m%)ydelmden.
0 0 0

Indeed
n—1
M (1 + Zxk> =W, (0). (18)
k=1

which we have evaluated in (16), (17) for n =3 and n =4
respectively.
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Open Problems

Open problems (Mahler measures, 1)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1,1 1 ' '
u(P) ::/ / / log | P (627"91,-..,eZ‘men)ydelmden.
0 0 0

Indeed
n—1
[ (1 + Zxk> =W, (0). (18)
k=1

which we have evaluated in (16), (17) for n =3 and n =4
respectively.
e 1(P) turns out to be an example of a period. When n =1
and P has integer coefficients exp(u(P)) is an algebraic
integer. In several dimensions life is harder.
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Open Problems

Open problems (Mahler measures, 1)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1,1 1 ' '
u(P) ::/ / / log | P ((327”91,-‘-,627”9”>]d91-~-d9n.
0 0 0

Indeed
n—1
[ (1 + Zxk> =W, (0). (18)
k=1

which we have evaluated in (16), (17) for n =3 and n =4
respectively.

e 1(P) turns out to be an example of a period. When n =1
and P has integer coefficients exp(u(P)) is an algebraic
integer. In several dimensions life is harder.

e There are remarkable recent results — many more discovered
than proven — expressing p(P) arithmetically.
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Open Problems

Open problems (Mahler measures, Il)

p(l+a+y) = Ly(—1) = L CI1(5) (Smyth).
,u(l~|—x+y~|—z)—14§( 2) = T <3 (Smyth).

\/

JMB/JW Short Random Walks



Open Problems

Open problems (Mahler measures, Il)

o u(l+z+y)=Ly(—1) =L CL(Z) (Smyth).

=7 Cl(5
ep(l+az4y+2)=14¢(-2) = u % (Smyth).

e (18) recaptures both Smyth's results.
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Open Problems

Open problems (Mahler measures, Il)

o p(1+z+y)=Ly(—1) = LCI(5) (Smyth).
o p(1+z+y+2) =14 (-2) = 43 (Smyth).
e (18) recaptures both Smyth's results.
e Denninger's 1997 conjecture, checked to over 50 places, is

15
M(1+x+y+1/x+1/y)l4—LE( )

— an L-series value for an elliptic curve E with conductor 15.
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Open Problems

Open problems (Mahler measures, Il)

o p(1+z+y)=Ly(—1) = LCI(5) (Smyth).
o p(1+z+y+2) =14 (-2) = 43 (Smyth).
e (18) recaptures both Smyth's results.
e Denninger's 1997 conjecture, checked to over 50 places, is

15
M(1+x+y+1/x+1/y)l4—LE( )

— an L-series value for an elliptic curve E with conductor 15.
e Similarly for (18) (n = 5,6) conjectures of Villegas become:

W.(0) = (ZW)S/Q/ (PP e™™) + 0’ (e (e )} 3 dt

wio = (E) [ e e e e

2
and Dedekind's 7 is 1)(q) := ¢"/?* 37°° _ (—1)"gq"3n+D/4,



Open Problems
Open problems

We have proven:
k 2
2 =
W4( k) Z (al,...,a4)
2 . )
_ Z(k;) 3F2(1/2,—k:+],—k‘+]|4>‘
J L1

/

::Vt:(Zk)
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Open Problems
Open problems

We have proven:

Wa(2k) = Z (al,.é. , a4)2

a1+--+as=k
2 . )
_ Z <k:> 3F2(1/2,—k:—|—],—k+]|4> .
/ 7 1,1
7=>0
::Vt:(Zk)

“Any time your are stuck on a problem, introduce more notation.”
— Chris Skinner
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Open Problems
Open problems

We have proven:

Wi(2k) = Z <a1, : k , a4) 2

a1+--+as=k
k2 1/2, k44, —k+3
= S (B) (AR
— \J 11
7=>0
::Vt:(Zk)

“Any time your are stuck on a problem, introduce more notation.”
— Chris Skinner

Conjecture
For all integers k we have Wy(k) = R(Vy(k)). J
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Open Problems

Open problems (general n)

e Conjecture (19) is explained = “almost” proved — via residue
calculus from Meijer-G form — modulo a technical growth
estimate (G). For complex s and n =1,2, ...,

Wan(s) = 5 (‘9; 2>2W2n_1(8 — 2§). (19)

J=0
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Open Problems

Open problems (general n)

e Conjecture (19) is explained = “almost” proved — via residue
calculus from Meijer-G form — modulo a technical growth
estimate (G). For complex s and n =1,2, ...,

Wan(s) = 5 (‘9; 2>2W2n_1(8 — 2§). (19)

J=0

e Known for all n with even integer s.
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Open Problems

Open problems (general n)

e Conjecture (19) is explained = “almost” proved — via residue
calculus from Meijer-G form — modulo a technical growth
estimate (G). For complex s and n =1,2, ...,

Wan(s) = JXZ% (‘9; 2>2W2n_1(8 — 2§). (19)

e Known for all n with even integer s.

e Now has very strong numerical evidence (Broadhurst).
Convergence is very rapid, using (8) to compute W), values.
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Open Problems

Open problems (general n)

e Conjecture (19) is explained = “almost” proved — via residue
calculus from Meijer-G form — modulo a technical growth
estimate (G). For complex s and n =1,2, ...,

Wan(s) = 5 (‘9; 2>2W2n_1(8 — 2§). (19)

J=0

e Known for all n with even integer s.

e Now has very strong numerical evidence (Broadhurst).
Convergence is very rapid, using (8) to compute W), values.

e Proven for n =1,2. Proven for n = 3 assuming (G); and
universally for all n assuming also all (equiv., first |5 |) odd
poles are simple.
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Open Problems

Open problems (general n)

e Conjecture (19) is explained = “almost” proved — via residue
calculus from Meijer-G form — modulo a technical growth
estimate (G). For complex s and n =1,2, ...,

Wan(s) = 5 (‘9; 2>2W2n_1(8 — 2§). (19)

J=0

e Known for all n with even integer s.

e Now has very strong numerical evidence (Broadhurst).
Convergence is very rapid, using (8) to compute W), values.

e Proven for n =1,2. Proven for n = 3 assuming (G); and
universally for all n assuming also all (equiv., first |5 |) odd
poles are simple.

v Could confirm n = 4,5,6, ... symbolically as we shall for n = 3:
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Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

Q. Is there a hyper-closed form for W5(F1) ?



Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

e From here we deduce the first two poles — and so all — are
simple since

lim_(s +2)7 W (s) = 24% (285 W5 (0) — 201 W (2) + 16 W (4)) = 0
5——
4

595 (5Ws5(0) — W5(2)) = 0.

. 2 o
i (s + 4)°Ws (s) =

Q. Is there a hyper-closed form for W5(F1) ?



Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

e From here we deduce the first two poles — and so all — are
simple since

lim (s +2)*Ws(s) = 24% (285 W5 (0) — 201 W5(2) + 16 W5 (4)) = 0
s——

. 2 _ =
i (s + 4)°Ws (s) =

e We stumbled upon

Q. Is there a hyper-closed form for W5(F1) ?
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Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

e From here we deduce the first two poles — and so all — are
simple since

lim (s +2)*Ws(s) = 24% (285 W5 (0) — 201 W5(2) + 16 W5 (4)) = 0
s——

. 2 _ =
i (s + 4)°Ws (s) =

e We stumbled upon

Q. Is there a hyper-closed form for W5(F1) ?
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Open Problems

Open problems (n = 5)

e We only know Res_4(W5) numerically — but to 500 digits:

Laurent expansion explains puzzling W on [—6, 2]

(near) linearity of ps on [0, 1]. UHU u

p5(1) = Res(_g)(Ws) N
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Open Problems

Open problems (n = 5)

e We only know Res_4(W5) numerically — but to 500 digits:

e by Bailey in about 5.5hrs on 1 MacPro core.

e Sidi-“mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.

Laurent expansion explains puzzling W on [—6, 2]

(near) linearity of ps on [0, 1]. UHU u

p5(1) = Res(_g)(Ws) N
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Open Problems

Open problems (n = 5)

e We only know Res_4(W5) numerically — but to 500 digits:

e by Bailey in about 5.5hrs on 1 MacPro core.

e Sidi-“mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.

e Can 75(2) be identified?

Laurent expansion explains puzzling W on [—6, 2]

(near) linearity of ps on [0, 1]. UHU u

p5(1) = Res(_g)(Ws) N
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Open Problems

Open problems (n = 5)

e We only know Res_4(W5) numerically — but to 500 digits:

e by Bailey in about 5.5hrs on 1 MacPro core.

e Sidi-“mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.

e Can r5(2) be identified?

e Here r5(k) := Res(_ay)(W5). Other residues are then
combinations as follows:

Laurent expansion explains puzzling W on [—6, 2]

(near) linearity of ps on [0, 1]. UHU u

p5(1) = Res(_g)(Ws)
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Open Problems

Open problems (n = 5)

e We only know Res_4(W5) numerically — but to 500 digits:

e by Bailey in about 5.5hrs on 1 MacPro core.

e Sidi-“mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.

e Can 75(2) be identified?

e Here r5(k) := Res(_ay)(W5). Other residues are then
combinations as follows:

e From the Ws-recursion: given r5(0) = 0,75(1) and 75(2) we have
k'rs(k) — (5+ 28k + 63 k% + 7T0k® + 35 k*) r5(k + 1)
225(k 4+ 1)2(k + 2)2

(285 + 518k + 259 k%) r5(k + 2)
225(k + 2)2 '
Laurent expansion explains puzzling W on [—6, 2]

(near) linearity of ps on [0, 1]. UHU u

p5(1) = Res(_g)(Ws) N
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Open Problems

Open problems (computing derivatives of 1)

Maple2latex code for the symbolic derivatives Wék)(s) is as follows:

WN:=proc (N,s,k) local t,j,dk; dk:=BesselJ(0,t)"N;
for j from 1 to k do dk:=-1/t*diff (dk,t) od;
27 (s-k+1) *GAMMA (s/2+1) /GAMMA (k-s/2)
*Int (£~ (2%k-s-1)*dk,t = O .. infinity);end;
>latex(normal (combine (simplify(subs(s=4,diff (WN(5,s,3),s)).

Prettified this yields W(4) = 40 [;° f(t) dt where f(t) :=

{s JE () I1 (1) + 2433 (1)I2 (8)t — 435 ()t + 1232 (H)I3 (1)t2 — 13I8 (1) I, (t)t2} (log (%) — o+ g)
i4

f on [0,7] Effective computation of Bessel integrals f on [m, 4]
(e.g., Lucas—Stone 95) to high or extreme |
precision is an ongoing project with Bailey.
(Needed for any substantial use of PSLQ.)

|
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Open Problems

Thank you

Two ramblers at ANZIAM 2010



Open Problems

Thank you ...

Conclusion. We continue to be fascinated by this blend of
combinatorics, number theory, analysis, probability, and differential
equations, all tied together with experimental mathematics.

Two ramblers at ANZIAM 2010
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