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Abstract. Considering the Douglas-Rachford iteration scheme with respect to a line and a sphere
in Rd, d ≥ 2, it is shown that by smoothing the operator in a neighbourhood of the origin, it can be
approximated by another operator that satisfies a weak ergodic theorem. Other iteration schemes
are also discussed.

1. Introduction

1.1. Background and statement of the main result. In this note we consider the Douglas-
Rachford operator in Rd, which is defined as follows. Given two sets A,B ⊆ Rd, define

TA,B =
I +RBRA

2
. (1.1)

Here I is the identity operator in Rd and RA, RB are the reflection operators with respect to A
and B, that is, RA = 2PA − I, RB = 2PB − I, where for a given set A ⊆ Rd, PA denotes the
projection operator on A,

PAx =

{
y ∈ A

∣∣∣ ‖x− y‖ = inf
z∈A
‖x− z‖

}
.

Here and in what follows, ‖ · ‖ denotes the Euclidean norm in Rd. In the general case, PA, PB,
as well as RA, RB, and TA,B can be multi-valued operators. One of the questions regarding the
Douglas-Rachford operator is the following. Given x ∈ Rd, study the asymptotic behaviour of a
sequence {xn}∞n=1 which is generated by the iterations of TA,B,

xn+1 ∈ TA,Bxn = (TA,B)nx, x1 = x. (1.2)

In the case where both A and B are convex, it is known that TA,B is single-valued and strictly
non-expansive, and the sequence {xn}∞n=1 is norm convergent. See for example [GK90,Opi67]. In
the non-convex case, several attempts have also been made. One of the simplest non-convex cases
is when one of the sets is a line in Rd and the other is the Euclidean unit sphere. Indeed, let ‖ · ‖
be the Euclidean norm in Rd. Fix α ∈ [0, 1], and let a, b ∈ Rd be two independent vectors. Define
the following sets,

S =
{
x ∈ Rd

∣∣ ‖x‖ = 1
}
, Lα =

{
x ∈ Rd

∣∣ x = λa+ αb, λ ∈ R
}
. (1.3)

It can be assumed without loss of generality that a ⊥ b and that ‖a‖ = ‖b‖ = 1. Let e1, e2, . . . , ed,

be an orthonormal basis of Rd such that e1 = a and e2 = b. Write x =
∑d

j=1 xjej ∈ Rd, where

xj = 〈x, ej〉, 〈·, ·〉 being the standard inner product in Rd. In such case, RLα , RS are given
explicitly by

RLαx = x1e1 + (2α− x2)e2 +
d∑
j=3

xjej, RSx =

(
2

‖x‖
− 1

)
x. (1.4)
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As a result, the Douglas-Rachford operator is given by the following explicit formula,

TS,Lα x =
x1
‖x‖

e1 +

(
α +

(
1− 1

‖x‖

)
x2

)
e2 +

d∑
j=3

(
1− 1

‖x‖

)
xjej. (1.5)

Note that TS,Lα is single-valued for every x 6= 0. It will always be assumed that d ≥ 2. In the case
d = 2, the sum in (1.4) and (1.5) is empty.

Remark 1.1. The sets defined in (1.3) can also be defined in an infinite dimensional Hilbert space.
In such case, (1.4) and (1.5) still hold true, but with an infinite sum in (1.5). See Section 5.2 for
a discussion of another iteration scheme in an infinite dimensional setting. �

Regarding the behaviour of the sequence defined in (1.2), it was shown in [BS11] that if α ∈
[0, 1), then (1.2) is locally convergent around the two intersection points ±

√
1− α2a+ αb. Later,

in [AAB13] a more detailed study of the asymptotic behaviour of the sequence (1.2) was studied
in the case d = 2. Recently, it was shown in [Ben15] that the sequence (1.2) converges for all
x ∈ Rd with 〈x, a〉 6= 0 (the global convergence for the case α = 0 was already shown in [BS11]).
The result in [Ben15] holds true in an infinite dimensional setting as well. In particular, it follows
that for every x, y ∈ Rd such that 〈x, a〉, 〈x, a〉, are either both positive or both negative, and for
every ε > 0, there exists N = N(x, y, ε) such that for all n ≥ N , ‖T nS,Lαx− T

n
S,Lα

y‖ < ε. However,

given ε > 0 and a set K ⊆ Rd, the results in [Ben15] do not yield an estimate on N = N(K, ε)
such that for all n ≥ N we have

sup
x,y∈K

‖T nS,Lαx− T
n
S,Lαy‖ < ε. (1.6)

The type of convergence that appears in (1.6) is the main focus of this note. Recall first the
following notion.

Definition 1.1 (Weak ergodic theorem). Given a set K ⊆ Rd, an operator G : K → K is said to
satisfy a weak ergodic theorem if for every ε > 0, there exists N ∈ N such that for all n ≥ N , we
have

sup
x,y∈K

‖Gnx−Gny‖ < ε.

The main result below, Theorem 1.1, says that by somehow ‘smoothing out’ the problematic
behaviour of the Douglas-Rachford operator close to the origin, we can approximate it with another
operator that satisfies a weak ergodic theorem.

To fix some notation, given a normed space (X, ‖ · ‖) let B[x, r] be the closed ball around x
with radius r, that is, B[x, r] =

{
y ∈ X

∣∣ ‖y − x‖ ≤ r
}

. B(x, r) will denote an open ball, that is,

B(x, r) =
{
y ∈ X

∣∣ ‖y − x‖ < r
}

.
We are now in a position to state the main result.

Theorem 1.1. Assume that α, β ∈ [0, 1), and γ, ε ∈ (0, 1). Assume that R, r ∈ [0,∞) are such
that R ≥ 4

1−α , r ≤ 1−α
4

. Then there exists a map G : Rd → Rd satisfying

sup
x∈B[0,R/2]\B(0,1−β)

‖TS,Lαx−Gx‖ ≤

(
1− (1− γ)2

1
1−β + dβ

2r

)
2R +

r

1− β
+ β, (1.7)

and for every n ∈ N satisfying

n ≥
log
(

ε
64R

)
log
(
1− γ

2

) + 2, (1.8)
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we have,

sup
x,y∈B[0,R/2]

‖Gnx−Gny‖ < ε. (1.9)

Moreover, if H : B

[
0,
√
R2 − (1−α)

2
R

]
→ B

[
0,
√
R2 − (1−α)

2
R

]
satisfies

sup

x∈B
[
0,
√
R2− (1−α)

2
R

] ‖Gx−Hx‖ ≤ ε

200
,

then for every n ∈ N satisfying (1.8), we have

sup
x,y∈B[0,R/2]

‖Hnx−Hny‖ < ε. (1.10)

Theorem 1.1 as stated above is by no means optimal. The version above is presented for the
sake of simplicity. Also, note that when β = 0, we can choose r = γ = 0. In such case TS,Lα = G
on Rd \B(0, 1). Next, we consider a simple example to illustrate the use of Theorem 1.1.

Example 1.1. To consider a concrete example, let d = 2 and choose r =
√
β. In order to make

such a choice, we would have to assume that β ≤ (1−α)2
16

. Also, in such case we have the following
trivial bounds,

r

1− β
+ β ≤ 2

√
β

1− β
,

1

1− β
+
β

r
=

1

1− β
+
√
β ≤ 1 +

√
β

1− β
=

1

1−
√
β
.

Hence, we have(
1− (1− γ)2

1
1−β + β

r

)
2R +

r

1− β
+ β ≤

(
1− (1− γ)2

(
1−

√
β
))

2R +
2
√
β

1− β

If we choose γ =
√
β, then we have(

1− (1− γ)2
(

1−
√
β
))

R +
2
√
β

1− β
=

(
1−

(
1−

√
β
)3)

2R +
2
√
β

1− β
≤ 8
√
βR +

2
√
β

1− β
.

If we further assume that β ≤ 1
(8R)4

, we have

8
√
βR +

2
√
β

1− β
≤ β1/4 +

2
√
β

1− β
≤ 3
√
β

1− β
.

Note that in order to use Theorem 1.1, we need to assume R ≥ 4
1−α , in which case 1

(8R)4
≤
(
1−α
4

)2
.

Hence, it is enough to assume R ≥ 4
1−α and β ≤ 1

(8R)4
. Altogether, applying Theorem 1.1, we have

that there exists G : Rd → Rd such that

sup
x∈B[0,R/2]\B(0,1−β)

‖TS,Lαx−Gx‖ ≤
3
√
β

1− β
,

and for every n ∈ N satisfying

n ≥
log
(

ε
64R

)
log
(

1−
√
β
2

) + 2,

we have

sup
x,y∈B[0,R/2]

‖Gnx−Gny‖ < ε.

Note that this example is not optimal. It is merely an example of how Theorem 1.1 can be used.�
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1.2. Comparing new and old results. By (1.5), the sets
{
x ∈ Rd

∣∣ 〈x, a〉 ≥ 0
}

,
{
x ∈

Rd
∣∣ 〈x, a〉 ≤ 0

}
, are both invariant under TS,Lα . Indeed, the global convergence result in [Ben15]

holds in each half space separately. However, during the process of ‘smoothing’ TS,Lα in the proof
of Theorem 1.1, this invariance property is lost. See in particular Theorem 2.3 and the proof of
Theorem 2.1 below. This smoothing process is robust enough to yield a map on B[0, R/2] which
satisfies an ergodic theorem and which approximates TS,Lα on B[0, R/2]\B(0, 1−β). However, we
do not how to preserve such invariance during the smoothing process, and it would be interesting
to find a way to do so.

Another difference between the results of [Ben15] and Theorem 1.1 is the following. While
Theorem 1.1 does not imply norm convergence as in [Ben15], it does show that as long as we avoid
approaching the origin, the Douglas-Rachford operator has Lipschitz behaviour that in turn can be
used to well approximate it with an operator that satisfies a weak ergodic theorem. Theorem 1.1
and particularly Theorem 2.1 below show that the Lipschitz behaviour of TS,Lα depends on the
distance from the origin, not on the particular location in the space. In particular, Theorem 1.1
would imply the following. Assume that K ⊆

{
x ∈ Rd

∣∣ 〈x, a〉 6= 0
}

. Let ε > 0, and choose
R, r, β, γ in Theorem 1.1 such that the bound in (1.7) is smaller than ε. By [Ben15] it is known

that the sequence {TmS,Lαx}
∞
m=1 satisfies ‖TmS,Lαx‖

m→∞−→ 1 for all x ∈ K. Assume that it were
known further that there exists N ′ = N ′(K, ε) such that TmS,Lα(K) ⊆ B[0, R/2] \ B(0, 1 − β) for

all m ≥ N ′. Then, Theorem 1.1 would yield a map G : Rd → Rd and N = N(ε) such that for all
n ≥ N , we have

sup
x∈B[0,R/2]\B(0,1−β)

‖TS,Lαx−Gx‖ < ε, sup
x,y∈B[0,R/2]

‖Gnx−Gny‖ < ε.

Since {TmS,Lαx}
∞
m=N ′ , {TmS,Lαx}

∞
m=N ′ ⊆ B[0, R/2] \B(0, 1−β), we have in particular for all m ≥ N ′,

n ≥ N ,

sup
x,y∈K

‖GnTmS,Lαx−G
nTmS,Lαy‖ < ε. (1.11)

In other words, if we knew that the norm of the Douglas-Rachford iteration scheme converges to 1
uniformly on some sets, then that would imply a weak ergodic theorem, not for the operator TS,Lα
itself, but involving another operator which well approximates it. It would thus be interesting to
see whether N ′ = N ′(K, ε) can be evaluated, at least for certain sets.

Note that even if (1.11) were true, it would not automatically imply a result involving TS,Lα
only. Indeed, in order to make (1.7) smaller than ε, then since 1

1−β + dβ
2r
≥ 1, we must have in

particular (1− (1− γ)2)R < ε, which means that

γ ≤ 1−
√

1− ε

R
≤ ε

R
. (1.12)

Next, we have for x ∈ K, n ≥ N , m ≥ N ′,

‖GnTmS,Lαx− T
n+m
S,Lα

x‖ ≤ ‖GnTmS,Lαx−GT
n+m−1
S,Lα

x‖+ ‖GT n+m−1S,Lα
x− T n+mS,Lα

x‖
(∗)
≤ ‖G‖lip‖Gn−1TmS,Lαx− T

n+m−1
S,Lα

x‖+ ε

(∗∗)
≤

(
1− γ

2

)
‖Gn−1TmS,Lαx− T

n+m−1
S,Lα

x‖+ ε, (1.13)

where in (∗) we used fact that G is Lipschitz, as well as the fact that T n+m−1S,Lα
x ∈ B[0, R/2] \

B(0, 1 − β) for all n ≥ N , m ≥ N ′, and in (∗∗) we used Remark 4.1 below. Altogether, by
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iterating (1.13), we have for x ∈ K, n ≥ N , m ≥ N ′,

‖GnTmS,Lαx− T
n+m
S,Lα

x‖ ≤ ε

n−1∑
k=0

(
1− γ

2

)k
=

2ε

γ

(
1−

(
1− γ

2

)n)
.

By the choice of N in (1.8), we have(
1− γ

2

)n
≤
(

1− γ

2

) log( ε
64R)

log(1− γ2 ) =
ε

64R
.

Combining this with (1.12), we have

2ε

γ

(
1−

(
1− γ

2

)n)
≥ 2R

(
1− ε

64R

)
,

which is not a good bound as ε→ 0.

Organisation of the note. The proof of Theorem 1.1 is done in two steps. Firstly, it is shown
that by removing a ball around the origin, we can approximate the Douglas-Rachford operator
with another map which satisfies a Lipschitz condition. This is done in Section 2. Then it is shown
that Lipschitz maps can be approximated by operators that satisfy a weak ergodic theorem. This
is very similar to the main result in [RZ03]. See Section 3. The proof of Theorem 1.1 is presented
in Section 4. Finally, in Section 5, we briefly discuss how the tools in this note can be applied to
other iteration schemes.

2. Lipschitz approximation of the Douglas-Rachford operator

The first step in the proof of Theorem 1.1 is to study of some aspects of the Lipschitz behaviour
of the Douglas-Rachford operator. Given two normed space (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and a map
f : X → Y , define

‖f‖lip = sup
x 6=y

‖f(x)− f(y)‖Y
‖x− y‖X

. (2.1)

A function f : X → Y is said to be Lipschitz if ‖f‖lip <∞. The first auxiliary result in the proof
of Theorem 1.1 reads as follows.

Theorem 2.1. Assume that α, β ∈ [0, 1), and R, ρ ∈ [0,∞) are such that

R ≥

√(
ρ2 + 4

2(1− α)

)2

+ ρ2 + 5.

Assume that r is such that 0 < r ≤ R −
√
R2 − ρ2. Then there exists a map F : Rd → Rd which

satisfies the following properties.

(1) Bounded Lipschitz constant:

‖F‖lip ≤
1

1− β
+
dβ

2r
. (2.2)

(2) Approximation of TS,Lα on Rd \B(0, 1− β):

sup
x∈Rd\B(0,1−β)

‖Fx− TS,Lαx‖ ≤
r

1− β
+ β. (2.3)

(3) Invariance:

F
(
B
[
0,
√
R2 − ρ2

])
⊆ B

[
0,
√
R2 − ρ2

]
. (2.4)
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We begin by showing that if we remove a neighbourhood of the origin, then the Douglas-
Rachford operator satisfies a Lipschitz condition, but with some error term. First we show that
the Douglas-Rachford operator satisfies a Lipschitz conditions on spheres and rays passing at the
origin.

Proposition 2.1. If ‖x‖ = ‖y‖ and x 6= 0, then

‖TS,Lαx− TS,Lαy‖ ≤ max

{
1

‖x‖
, 1− 1

‖x‖

}
‖x− y‖. (2.5)

If y = tx, t ∈ R \ {0}, then

‖TS,Lαx− TS,Lαy‖ ≤ ‖x− y‖. (2.6)

Proof. First, note that by (1.4), we have for all x, y ∈ Rd,

‖RLαx−RLαy‖ = ‖x− y‖. (2.7)

Assume first that ‖x‖ = ‖y‖. Then we have

‖TS,Lαx− TS,Lαy‖
(1.1)

≤ 1

2
‖x− y‖+

1

2
‖RLαRSx−RLαRSy‖

(2.7)
=

1

2
‖x− y‖+

1

2
‖RSx−RSy‖

(1.4)
=

1

2
‖x− y‖+

1

2

∣∣∣∣ 2

‖x‖
− 1

∣∣∣∣ ‖x− y‖ ≤ max

{
1

‖x‖
, 1− 1

‖x‖

}
‖x− y‖,

which proves (2.5). If y = tx, t ∈ R \ {0}, we have

‖TS,Lαx− TS,Lαy‖ ≤
1

2
‖x− y‖+

1

2
‖RSx−RSy‖

=
|t− 1|‖x‖

2
+

1

2

∥∥∥∥( 2

‖x‖
− 1

)
x−

(
2

t‖x‖
− 1

)
tx

∥∥∥∥ = |t− 1|‖x‖ =
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖.

This proves (2.6) and the proof is complete. �

Next, we show the ‘almost Lipschitz’ property of the Douglas-Rachford operator on the do-
main Rd \B(0, 1− β).

Proposition 2.2. Assume that β ∈ [0, 1) and x, y ∈ Rd \B(0, 1− β). Then

‖TS,Lαx− TS,Lαy‖ ≤
‖x− y‖
1− β

+ β.

Proof. Assume first that ‖x‖ ≥ 1, ‖y‖ ≥ 1. In such case, we have that RSx = RB[0,1]x, RSy =
RB[0,1]y. Since B[0, 1] is a convex set, it is known that in such case, the reflection map is non-
expansive. See for example Theorem 12.2 in [GK90]. Thus,we have that ‖RSx−RSy‖ ≤ ‖x− y‖.
As before, we have ‖RLαx−RLαy‖ = ‖x− y‖ for all x, y ∈ Rd. Hence, we have

‖TS,Lαx− TS,Lαy‖ ≤
1

2
‖x− y‖+

1

2
‖RLαRSx−RLαRSy‖

=
1

2
‖x− y‖+

1

2
‖RSx−RSy‖ ≤ ‖x− y‖. (2.8)

Next, assume that ‖x‖ ≤ 1, ‖y‖ ≤ 1. Assume without loss of generality that ‖x‖ ≤ ‖y‖. Note
that since ‖x‖ ∈ [1− β, 1], we have

max

{
1

‖x‖
, 1− 1

‖x‖

}
≤ 1

1− β
.
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Also, since ‖x‖, ‖y‖ ∈ [1− β, 1], we have
∣∣‖x‖ − ‖y‖∣∣ ≤ β. Hence, we have

‖TS,Lαx− TS,Lαy‖ ≤
∥∥∥∥TS,Lαx− TS,Lα (‖x‖‖y‖y

)∥∥∥∥+

∥∥∥∥TS,Lα (‖x‖‖y‖y
)
− TS,Lαy

∥∥∥∥
(2.5)∧(2.6)
≤ max

{
1

‖x‖
, 1− 1

‖x‖

}
‖x− y‖+

∥∥∥∥y − ‖y‖‖x‖y
∥∥∥∥ ≤ ‖x− y‖1− β

+
∣∣‖x‖ − ‖y‖∣∣

≤ ‖x− y‖
1− β

+ β. (2.9)

Finally, consider the case where ‖x‖ ≤ 1 ≤ ‖y‖. In such case, there exists s ∈ [0, 1] such that
‖sx+ (1− s)y‖ = 1. Therefore, we have

‖TS,Lαx− TS,Lαy‖ ≤ ‖TS,Lαx− TS,Lα(sx+ (1− s)y)‖+ ‖TS,Lα(sx+ (1− s)y)− TS,Lαy‖
(2.8)∧(2.9)
≤ ‖x− (sx+ (1− s)y)‖

1− β
+ β + ‖(sx+ (1− s)y)− y‖

=
(1− s)‖x− y‖

1− β
+ β + s‖x− y‖ ≤ ‖x− y‖

1− β
+ β. (2.10)

Combining (2.8), (2.9), and (2.10), the proof is complete. �

Next, we study some of the invariance properties of TS,Lα . The following is a simple generalisa-
tion of Proposition 6.7 in [BS11].

Proposition 2.3. Assume that α ∈ [0, 1) and ρ ≥ 0. Assume that ‖x‖ ≥ 1 + α2+ρ2

2(1−α) . Then

‖TS,Lαx‖ ≤
√
‖x‖2 − ρ2.

Proof. First, note that if we assume that ‖x‖ ≥ 1 + α2+ρ2

2(1−α) and since α ∈ [0, 1), we have

‖x‖ ≥ 1 +
ρ2

2
=

(
ρ√
2
− 1

)2

+
√

2ρ ≥ ρ.

Hence, ‖x‖2 − ρ2 ≥ 0. Next, by (1.5), we have

‖TS,Lαx‖2 =
x21
‖x‖2

+ α2 + 2αx2

(
1− 1

‖x‖

)
+

(
1− 1

‖x‖

)2 d∑
j=2

x2j

= α2 + 2αx2

(
1− 1

‖x‖

)
+ 1 +

(
1− 2

‖x‖

) d∑
j=2

x2j

≤ α2 + 2αx2

(
1− 1

‖x‖

)
+ 1 +

(
1− 1

‖x‖

)2 d∑
j=2

x2j

≤ α2 + 2αx2

(
1− 1

‖x‖

)
+ 1 +

(
1− 1

‖x‖

)2

‖x‖2

= α2 + 2αx2

(
1− 1

‖x‖

)
+ ‖x‖2 + 2(1− ‖x‖)

= α2 + ‖x‖2 + 2(1− ‖x‖)
(

1− αx2
‖x‖

)
.
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In particular, if ‖x‖ ≥ 1 + α2+ρ2

2(1−α) , we have

‖TS,Lαx‖2 ≤ α2 + ‖x‖2 + 2(1− ‖x‖)
(

1− αx2
‖x‖

)
≤ α2 + ‖x‖2 + 2(1− ‖x‖)(1− α) ≤ ‖x‖2 − ρ2,

and the proof is complete. �

Proposition 2.4. Assume that α ∈ [0, 1). If ‖x‖ ≤ 1 + α2+ρ2

2(1−α) , then

‖TS,Lαx‖ ≤
ρ2 + 4

2(1− α)
.

Proof. As in the proof of Proposition 2.3, we have

‖TS,Lαx‖2 ≤ ‖x‖2 + α2 + 2(1− ‖x‖)
(

1− αx2
‖x‖

)
.

If ‖x‖ ≥ 1, then since it was assumed that ‖x‖ ≤ 1 + α2+ρ2

2(1−α) , we have

‖TS,Lαx‖ ≤
√
‖x‖2 + α2 ≤ ‖x‖+ α ≤ 1 +

α2 + ρ2

2(1− α)
+ α =

ρ2 − α2 + 2

2(1− α)
≤ ρ2 + 4

2(1− α)
. (2.11)

If ‖x‖ ≤ 1, we have

‖TS,Lαx‖ ≤
√
‖x‖2 + α2 + 2 ≤

√
3 + α2 ≤ 2 ≤ ρ2 + 4

2(1− α)
. (2.12)

Combining (2.11) and (2.12), the result follows. �

Using Proposition 2.3 and Proposition 2.4, we can prove the following invariance property of
the operator TS,Lα .

Corollary 2.1. Assume that α ∈ [0, 1). If R, ρ ≥ 0 are such that

R ≥

√(
ρ2 + 4

2(1− α)

)2

+ ρ2,

then

TS,Lα
(
B[0, R]

)
⊆ B

[
0,
√
R2 − ρ2

]
.

Proof. If ‖x‖ ≤ R and ‖x‖ ≥ 1 + α2+ρ2

2(1−α) , then by Proposition 2.3 we have

‖TS,Lαx‖ ≤
√
‖x‖2 − ρ2 ≤

√
R2 − ρ2.

Otherwise, if ‖x‖ ≤ 1 + α2+ρ2

2(1−α) , then by Proposition 2.4, we have

‖TS,Lαx‖ ≤
ρ2 + 4

2(1− α)
≤
√
R2 − ρ2,

and this completes the proof. �

Next, we show that if we consider the Douglas-Rachford operator on Rd \ B(0, 1 − β), we can
extend it to all of Rd while preserving some of its invariance properties. First, we would like to
extend the function so that its domain includes B[0, 1−β]. In order to do so, we use Kirszbraun’s
Theorem. See for example [BL00].

Theorem 2.2. Assume that A ⊆ Rd is a subset of Rd. Assume that f : A → Rd is Lipschitz.
Then there exists f̃ : Rd → Rd such that f̃

∣∣
A

= f and ‖f̃‖lip = ‖f‖lip.

8



Using Theorem 2.2, we deduce the following simple proposition.

Proposition 2.5. Assume that r > 0 and f : ∂B[0, r]→ Rd is a Lipschitz map. Then there exists

a function f̃ : B[0, r]→ Rd such that f̃
∣∣
∂B[0,r]

= f , ‖f̃‖lip = ‖f‖lip, and

sup
x∈B[0,r]

‖f̃(x)‖ ≤ sup
x∈∂B[0,r]

‖f(x)‖+ r‖f‖lip.

Proof. Let f̃ : B[0, r]→ Rd be the extension from Theorem 2.2. For every x ∈ B[0, r] there exists
y ∈ ∂B[0, r] such that ‖x− y‖ ≤ r. Hence, we have

‖f̃(x)‖ ≤ ‖f̃(y)‖+ ‖f̃(x)− f̃(y)‖ = ‖f(y)‖+ ‖f̃(x)− f̃(y)‖
≤ ‖f(y)‖+ r‖f̃‖lip = ‖f(y)‖+ r‖f‖lip ≤ sup

y∈∂B[0,r]

‖f(y)‖+ r‖f‖lip.

�

Using Proposition 2.5, we can now extend TS,Lα from Rd\B(0, 1−β) to all of Rd while preserving
its Lipschitz and its invariance properties.

Proposition 2.6. Assume that α, β ∈ [0, 1). Then there exists a map T : Rd → Rd such that
T
∣∣
Rd\B(0,1−β) = TS,Lα, and for all x, y ∈ Rd,

‖Tx− Ty‖ ≤ ‖x− y‖
1− β

+ β. (2.13)

Moreover, if we assume that R, ρ ∈ [0,∞) are such that R ≥
√(

ρ2+4
2(1−α)

)2
+ ρ2 + 5, then we have

T
(
B[0, R]

)
⊆ B

[
0,
√
R2 − ρ2

]
. (2.14)

Proof. Define T so that its domain includes B[0, 1 − β]. To do that, use Kirszbraun’s Theorem.

There exists f̃ : B[0, 1 − β] → Rd such that f̃
∣∣
∂B[0,1−β] = TS,Lα and ‖f̃‖lip =

∥∥TS,Lα∣∣∂B[0,1−β]

∥∥
lip

.

Then, define for x ∈ Rd,

Tx =

{
f̃(x) x ∈ B[0, 1− β]

TS,Lα x /∈ B[0, 1− β].

Clearly we have T
∣∣
Rd\B(0,1−β) = TS,Lα . Note also that for every x, y ∈ ∂B[0, 1−β] we have by (2.5)

‖TS,Lαx− TS,Lαy‖ ≤ max

{
1

1− β
, 1− 1

1− β

}
‖x− y‖ =

1

1− β
‖x− y‖.

Assume that x, y ∈ Rd. We consider several cases. Assume first that x, y ∈ B[0, 1− β]. Then we
have

‖Tx− Ty‖ = ‖f̃(x)− f̃(y)‖ ≤ 1

1− β
‖x− y‖ ≤ ‖y − x‖

1− β
+ β. (2.15)

Next, assume that ‖x‖ ≥ 1−β, ‖y‖ ≥ 1−β. Then x, y ∈ Rd\B(0, 1−β) and so by Proposition 2.2,
we have

‖Tx− Ty‖ = ‖TS,Lαx− TS,Lαy‖ ≤
‖y − x‖
1− β

+ β, (2.16)
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Finally, we need to consider the case ‖x‖ ≤ 1− β ≤ ‖y‖. In such case, there exists s ∈ [0, 1] such
that ‖sx+ (1− s)y‖ = 1− β. Hence, we have

‖Tx− Ty‖ ≤ ‖Tx− T (sx+ (1− s)y)‖+ ‖T (sx+ (1− s)y)− Ty‖
= ‖f̃(x)− f̃(sx+ (1− s)y)‖+ ‖TS,Lα(sx+ (1− s)y)− TS,Lαy‖

≤ 1

1− β
‖x− (sx+ (1− s)y)‖+

‖sx+ (1− s)y − y‖
1− β

+ β

=
(s− 1)‖x− y‖

1− β
+
s‖x− y‖

1− β
+ β =

‖x− y‖
1− β

+ β. (2.17)

Combining (2.15), (2.16), (2.17), inequality (2.13) follows. To prove the boundedness property,

note that if x ∈ B[0, 1− β], then Tx = f̃(x) and so by Proposition 2.5, we have

‖Tx‖ ≤ sup
‖x‖=1−β

‖TS,Lαx‖+
1− β
1− β

(2.12)

≤
√

3 + α2 + 1
(∗)
≤ 3

(∗∗)
≤
√
R2 − ρ2, (2.18)

where in (∗) we used the fact that α ≤ 1 and in (∗∗) we used the fact that from the choice of R,
we have √

R2 − ρ2 ≥

√(
ρ2 + 4

2(1− α)

)2

+ 5 ≥
√

4 + 5 = 3.

Finally, if 1− β ≤ ‖x‖ ≤ R, then we have by Corollary 2.1,

‖Tx‖ = ‖TS,Lαx‖ ≤
√
R2 − ρ2. (2.19)

Combining (2.18) and (2.19), (2.14) follows, and this completes the proof. �

Remark 2.1. Note that so far we have not used the fact the dimension is finite (Kirszbraun’s
Theorem holds in infinite dimensional Hilbert spaces). �

Proposition 2.6 shows how to construct a map on Rd which is ‘almost Lipschitz’. However, in
order to use Theorem 3.1 below, we need to have Lipschitz functions. In order to achieve this, we
use the following Theorem, proved in [Beg99], which is a simplification of a result that appeared
in [Bou87]. See also Lemma 3.1 in [GNS12]. The following theorem holds only in finite dimensional
spaces.

Theorem 2.3. Assume that M, δ ∈ [0,∞). Assume that T : Rd → Rd satisfies for all x, y ∈ Rd

‖Ty − Tx‖ ≤M
(
‖y − x‖+ δ).

Then the map F : Rd → Rd defined by

Fx =
1

Vol
(
B[0, r]

) ∫
B[0,r]

T (x+ y)dy,

is a Lipschitz map with

‖F‖lip ≤M

(
1 +

dδ

2r

)
,

and for all x ∈ Rd,

‖Fx− Tx‖ ≤M(r + δ).

Using Theorem 2.3, we can prove Theorem 2.1.
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Proof of Theorem 2.1. Apply Theorem 2.3 to the map T from Proposition 2.6, with M = 1
1−β and

δ = β(1 − β). Then (2.2) follows immediately. Also, (2.3) follows from the fact that T = TS,Lα
on Rd \B(0, 1− β) combined with Theorem 2.3. To prove (2.4), note that if x ∈ B

[
0,
√
R2 − ρ2

]
and r ≤ R−

√
R2 − ρ2, then B[x, r] ⊆ B[0, R]. Hence, by (2.14) in Proposition 2.6, we have that

‖Ty‖ ≤
√
R2 − ρ2 for all y ∈ B[x, r]. Therefore, we have

‖Fx‖ ≤ 1

Vol
(
B[0, r]

) ∫
B[x,r]

‖Ty‖dy ≤
√
R2 − ρ2,

and this completes the proof. �

Remark 2.2. In [Bou87], F is defined using the Poisson semigroup

Fx =

∫
Rd
Pr(y)T (x+ y)dy, Pr(y) =

cdr

(r2 + ‖y‖2)
d+1
2

,

cd being a normalisation constant. Note, however, that since Pr is not compactly supported, using
this version of F would not yield the desired invariance property (2.4). �

3. A weak ergodic theorem for sequences of Lipschitz maps

The second auxiliary result is a general weak ergodic theorem for sequences of Lipschitz maps
on a normed space. It is a straightforward modification of the main result in [RZ03]. Assume that
(X, ‖ · ‖) is a Banach space and K ⊆ X is a closed, bounded and convex set. Let M ≥ 1. For a
sequence of Lipschitz maps {Fj}∞j=1, Fj : K → K, define the following set

BM =

{
{Fj}∞j=1

∣∣∣ lim sup
j→∞

‖Fj‖lip ≤M

}
.

Let θ ∈ K be a fixed vector, and let γ ∈ [0, 1]. Given a Lipschitz map F : K → K, define the
following operator:

Fγx = (1− γ)Fx+ γθ.

Note that since K is convex, we have Fγ : K → K. Inductively, for k ≥ 2, define

Fγ(k)x =
(
Fγ(k−1)

)
γ
x = (1− γ)Fγ(k−1)x+ γθ = (1− γ)kFx+

(
1− (1− γ)k

)
θ. (3.1)

The operation F → Fγ is a smoothing operator, with some loss of precision. Next, define the weak
distance on BM . Given {Fj}∞j=1, {Gj}∞j=1 ∈ BM , define

dw({Fj}∞j=1, {Gj}∞j=1) = sup
j∈N

sup
x∈K
‖Fjx−Gjx‖.

In [RZ03], the notion of strong distance is also defined. However, for the purposes of this note,
we will consider only weak distances between sequences of maps. For {Fj}∞j=1 ∈ BM and r > 0,
let Bdw({Fj}∞j=1, r) be the open ball around {Fj}∞j=1 with radius r (recall that the notation B[x, r]
was used to denote the closed ball). A sequence {Fj}∞j=1 is said to be constant if Fj = F1 for all
j ∈ N.

We are now in a position to state the second main auxiliary result.

Theorem 3.1. Let M ≥ 1. Let (X, ‖ · ‖) be a Banach space and K ⊆ X be a closed, bounded,
convex set. Then there exists a set F ⊆ BM which is Gδ in the weak-distance topology, which has
the following properties.
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(1) For every γ ∈ (0, 1), there exists k = k(γ,M), such that for every {Fj}∞j=1, the sequence
{(Fj)γ(k)}∞j=1 is in F , and we have

dw({Fj}∞j=1, {(Fj)γ(k)}∞j=1) ≤
(

1− (1− γ)2

M

)
diam(K), (3.2)

(2) For every ε > 0, there exists n ∈ N such that if

{Hj}∞j=1 ∈ Bdw

(
{(Fj)γ(k)}∞j=1,

ε

100
(
max

{
(1− γ)k supj∈N ‖Fj‖lip, 1

})n
)
,

then for every injective map τ : {1, . . . , n} → N, we have

sup
x,y∈K

‖Hτ(n) · · ·Hτ(1)x−Hτ(n) · · ·Hτ(1)y‖ < ε. (3.3)

If {Fj}∞j=1 is a constant sequence, then we can choose

{Hj}∞j=1 ∈ Bdw

(
{(Fj)γ(k)}∞j=1,

ε

200

)
,

and (3.3) holds for every n satisfying

n ≥
log
(

ε
64diam(K)

)
log
(
1− γ

2

) + 2. (3.4)

Remark 3.1. The case M = 1 was studied in [RZ03] with a better bound in (3.2), in addition to
other properties which will not be studied here. �

Remark 3.2. If K ′ ⊆ K and T : K → K ′, then we can replace the term diam(K) by diam(K ′)
in (3.2). �

We begin with the following simple proposition, which follows trivially from (3.1).

Proposition 3.1. Assume that F : K → K be a Lipschitz map, γ ∈ (0, 1) and k ∈ N. Then

sup
x∈K

∥∥Fγ(k)x− Fx∥∥ ≤ (1− (1− γ)k)diam(K),

‖Fγ(k)‖lip = (1− γ)k‖F‖lip, (3.5)

‖F − Fγ(k)‖lip ≤ (1− (1− γ)k)‖F‖lip.

In particular,

dw({Fj}∞j=1, {(Fj)γ(k)}∞j=1) ≤ (1− (1− γ)k) diam(K).

The following is a simple modification of Lemma 2.1 in [RZ03].

Lemma 3.1. Assume that {Fj}∞j=1 ∈ BM , M ≥ 1, γ ∈ (0, 1), and ε > 0. Assume that k ∈ N is
given by

k =

⌈ ∣∣∣∣ logM

log (1− γ)

∣∣∣∣ ⌉+ 1. (3.6)

Then there exists N ∈ N such that for every n ≥ N , every injective τ : {1, . . . , n} → N, we have

sup
x,y∈K

‖(Fτ(n))γ(k) · · · (Fτ(1))γ(k)x− (Fτ(n))γ(k) · · · (Fτ(1))γ(k)y‖ < ε. (3.7)
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In the case where {Fj}∞n=0 is a constant sequence, we can choose

N =
log
(

ε
diam(K)

)
log
(
1− γ

2

) + 2. (3.8)

Proof. First, by Lemma 3.1, ‖(Fj)γ(k)‖lip ≤ (1 − γ)k‖Fj‖lip. Since {Fj}∞j=1 ∈ BM , there exists
j0 ∈ N such that if j ≥ j0, then

‖(Fj)γ(k)‖lip ≤ (1− γ)k−1
(

1− γ

2

)
M.

By the choice of k, it follows that for all j ≥ j0,

‖(Fj)γ(k)‖lip ≤ 1− γ

2
. (3.9)

Next, continue as in Lemma 2.1 in [RZ03]. Choose j1 ≥ 2 sufficiently large such that(
sup
j∈N
‖Fj‖lip + 1

)j0 (
1− γ

2

)j1
diam(K) < ε, (3.10)

and let N = j0 + j1 + 1. Let n ≥ N , τ : {1, . . . , n} → N an injective map, and define

E1 =
{
j ∈ {1, . . . , n}

∣∣ τ(j) < j0
}
, E2 = {1, . . . , n} \ E1.

Since τ is injective, it follows that |E1| < j0, |E2| > j1. Therefore, we have∥∥∥( m∏
j=1

(Fτ(j))γ(k)
)
x−

( m∏
j=1

(Fτ(j))γ(k)
)
y
∥∥∥ ≤ ∏

j∈E1

‖(Fτ(j))γ(k)‖lip
∏
j∈E2

‖(Fτ(j))γ(k)‖lip diam(K)

≤
(

sup
j∈N
‖Fj‖lip + 1

)|E1| (
1− γ

2

)|E2|
diam(K) ≤

(
sup
j∈N
‖Fj‖lip + 1

)j0 (
1− γ

2

)j1
diam(K) < ε,

which completes the proof of (3.7). In case {Fj}∞j=1 is a constant sequence, we can choose j0 = 0,
making E1 an empty set. In order that j1 satisfy (3.10), we can choose

j1 =
log
(

ε
diam(K)

)
log
(
1− γ

2

) + 1.

Then, choosing N = j1 + 1 completes the proof of (3.8). �

Proposition 3.2. Assume that M ≥ 1. If k ∈ N is chosen as in Lemma 3.1, then

1− (1− γ)k ≤ 1− (1− γ)2

M
.

In particular, for every {Fj}∞j=1 ∈ BM ,

dw({Fj}∞j=1, {(Fj)γ(k)}∞j=1) ≤
(

1− (1− γ)2

M

)
diam(K).

Proof. Recall that k was chosen to be the smallest integer such that (1 − γ)k−1 ≤ 1
M

. Therefore,

we have 1
M
≤ (1− γ)k−2, which implies that 1− (1− γ)k ≤ 1− (1−γ)2

M
. �

Lemma 3.2 (Lemma 2.2 in [RZ03]). Let ε > 0. Assume that {Fj}∞j=1 is a sequence of Lipschitz
maps. Assume also that there exists n ∈ N such that for every injective τ : {1, . . . , n} → N we
have

sup
x,y∈K

‖Fτ(n) · · ·Fτ(1)x− Fτ(n) · · ·Fτ(1)y‖ <
ε

8
.
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Assume that

{Hj}∞j=1 ∈ Bdw

(
{Fj}∞j=1,

ε

16
(
max

{
supj∈N ‖Fj‖lip, 1

})n
)
.

Then for every injective τ : {1, . . . , n} → N, we have

sup
x,y∈K

‖Hτ(n) · · ·Hτ(1)x−Hτ(n) · · ·Hτ(1)y‖ < ε.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let {Fj}∞j=1 ∈ BM , γ ∈ (0, 1) and l ∈ N. By Lemma 3.1, there exist k =
k(γ,M) and N = N({Fj}∞j=1, γ, l) such that for every n ≥ N and every injective τ : {1, . . . , n} →
N,

sup
x,y∈K

‖(Fτ(n))γ(k) · · · (Fτ(1))γ(k)x− (Fτ(n))γ(k) · · · (Fτ(1))γ(k)y‖ <
1

8l
. (3.11)

By Lemma 3.2, if

{Hj}∞j=1 ∈ Bdw

(
{(Fj)γ(k)}∞j=1,

1

16 l
(
max

{
supj∈N ‖(Fj)γ(k)‖lip, 1

})n
)

(3.5)
= Bdw

(
{(Fj)γ(k)}∞j=1,

1

16 l
(
max

{
(1− γ)k supj∈N ‖Fj‖lip, 1

})n
)
,

then

sup
x,y∈K

‖Hτ(n) · · ·Hτ(1)x−Hτ(n) · · ·Hτ(1)y‖ <
1

l
.

Define F =
⋂∞
l=1Fl, where

Fl =
⋃

{Fj}∞j=1∈BM

⋃
γ∈(0,1)

Bdw

(
{(Fj)γ(k)}∞j=1,

1

16 l
(
max

{
(1− γ)k supj∈N ‖Fj‖lip, 1

})N({Fj}∞j=1,γ,l)

)
.

Then F is a countable intersection of open sets in the weak-distance topology. Also, for every
{Fj}∞j=1 ∈ BM , by Lemma 3.2, we have

dw({Fj}∞j=1, {(Fj)γ(k)}∞j=1) ≤
(

1− (1− γ)2

M

)
diam(K).

This completes the proof of (3.2). Let ε ∈ (0, 1), and choose l =
⌈
8
ε

⌉
, and n ≥ N({Fj}∞j=1, γ, l).

Let

{Hj}∞j=1 ∈ Bdw

(
{(Fj)γ(k)}∞j=1,

ε

200
(
max

{
(1− γ)k supj∈N ‖Fj‖lip, 1

})n
)

⊆ Bdw

(
{(Fj)γ(k)}∞j=1,

1

16 l
(
max

{
(1− γ)k supj∈N ‖Fj‖lip, 1

})n
)
.

Then by Lemma 3.2 and (3.11), we have that for every injective τ : {1, . . . , n} → N,

sup
x,y∈K

‖Hτ(m) · · ·Hτ(1)x−Hτ(m) · · ·Hτ(1)y‖ <
8

l
≤ ε,
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which proves (3.3). In case {Fj}∞j=1 is a constant sequence, we have by the choice of k,

(1− γ)k sup
j∈N
‖F‖lip = (1− γ)kM ∈

[
(1− γ)2, 1− γ

]
.

Hence, in this case we have max
{

(1− γ)k supj∈N ‖Fj‖lip, 1
}

= 1, and so we can choose

{Hj}∞j=1 ∈ Bdw

(
{(Fj)γ(k)}∞j=1,

ε

200

)
.

Also, note that for (3.11) to hold true, by Lemma 3.1 we need to choose

N({Fj}∞j=1, γ, l) =
− log(8l)− log

(
diam(K)

)
log
(
1− γ

2

) + 2.

Since l ≥ 8
ε
, it is enough that we choose

n ≥
log
(

ε
64diam(K)

)
log
(
1− γ

2

) + 2.

This proves (3.4) and completes the proof of Theorem 3.1. �

Remark 3.3. By (3.9) it follows that if {Fj}∞j=1 is constant, then ‖(Fj)γ(k)‖lip ≤ 1 − γ
2

for all
j ∈ N. �

4. Proof of Theorem 1.1

First, we begin with the following trivial observations.

Proposition 4.1. Assume that α ∈ [0, 1). Assume that R ≥ 4
1−α and ρ =

√
(1−α)R

2
. Then the

following inequalities hold.

R ≥

√(
ρ2 + 4

2(1− α)

)2

+ ρ2 + 5, (4.1)

√
R2 − ρ2 ≥ R

2
, (4.2)

R−
√
R2 − ρ2 ≥ 1− α

4
. (4.3)

Proof. Since R ≥ 4
1−α , we have 1 ≤ (1−α)R

4
. Hence,(

ρ2 + 4

2(1− α)

)2

+ ρ2 + 5 ≤

(
(1−α)R

2
+ (1− α)R

2(1− α)

)2

+
(1− α)R

2
+ 5

(1− α)R

4

=
9R2

16
+

7(1− α)R

4
,

and the last term is smaller than R2 provided that R ≥ 4(1−α), which is assumed to be the case.
This proves (4.1). Next, in order to prove (4.2), note that it is equivalent to R ≥ 2

3
(1− α), which

is assumed to be the case. Finally, to prove (4.3), note that we have

R−
√
R2 − ρ2 ≥ ρ2

2R
=

1− α
4

,

and the proof is complete. �

We are now in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. If we choose R ≥ 4
1−α , and ρ =

√
(1−α)R

2
, then by (4.3) in Proposition 4.1,

any r > 0 satisfying r ≤ 1−α
4

also satisfies r ≤ R −
√
R2 − ρ2. Also, again by Proposition 4.1,

we have R ≥
√(

ρ2+4
2(1−α)

)2
+ ρ2 + 5. Hence, all the assumptions of Theorem 2.1 hold, and so there

exists F : Rd → Rd that satisfies (2.2), (2.3), (2.4). Next, let G = Fγ(k) , as defined in (3.1), and
let

K = B
[
0,
√
R2 − ρ2

]
.

Then diam(K) ≤ 2R. Also, by (4.2), we have B[0, R/2] ⊆ B
[
0,
√
R2 − ρ2

]
. Thus, by part (1) of

Theorem 3.1 with M = 1
1−β + dβ

2
, we have

sup
x∈B[0,R/2]

‖Fx−Gx‖ ≤ sup
x∈B
[
0,
√
R2−ρ2

] ‖Fx−Gx‖ ≤
(

1− (1− γ)2

1
1−β + dβ

2

)
2R.

Combining this with (2.3), we get

sup
x∈B[0,R/2]\B(0,1−β)

‖TS,Lαx−Gx‖ ≤

(
1− (1− γ)2

1
1−β + dβ

2

)
2R +

r

1− β
+ β.

This proves (1.7). Next, assuming that n ∈ N satisfies (1.8), (1.9) follows from Theorem 3.1. To
prove (1.10), note that by the choice of ρ, we have

K = B
[
0,
√
R2 − ρ2

]
= B

[
0,

√
R2 − 1− α

2
R

]
.

Thus, by part (2) of Theorem 3.1 and (4.2) in Proposition 4.1, we have

sup
x,y∈B[0,R/2]

‖Hnx−Hny‖ ≤ sup
x,y∈B

[
0,
√
R2− 1−α

2
R
] ‖Hnx−Hny‖ < ε,

and this completes the proof of Theorem 1.1. �

Remark 4.1. By Remark 3.3 it follows that ‖G‖lip ≤ 1− γ
2
. �

5. Other iteration schemes

5.1. Families of iteration schemes. The Douglas-Rachford operator, as defined in (1.1), is a
part of a bigger family of operators. Given A,B ⊆ Rd and s1, s2, s3 ∈ [0, 1], define

T s1,s2,s3A,B = s1I + (1− s1) (s2I + (1− s2)RB) (s3I + (1− s3)RA) . (5.1)

As before, I denotes the identity operator. See [BST15] for a more detailed discussion of this
family of operators. The Douglas-Rachford operator defined in (1.1) corresponds to the case
s1 = 1

2
, s2 = s3 = 0. Focusing on the case A = S, B = Lα as defined in (1.3), we have the

following analogue of Proposition (2.1).

Proposition 5.1. Let s1, s2, s3 ∈ [0, 1]. If ‖x‖ = ‖y‖ and ‖x‖ ≤ 1, then

‖T s1,s2,s3S,Lα
x− T s1,s2,s3S,Lα

y‖ ≤ ‖x− y‖
‖x‖

. (5.2)

If y = tx, t ∈ R \ {0}, then

‖T s1,s2,s3S,Lα
x− T s1,s2,s3S,Lα

y‖ ≤ ‖x− y‖. (5.3)
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Proof. By (5.1) and the fact that ‖RLαx−RLαy‖ = ‖x− y‖, we have

‖T s1,s2,s3S,Lα
x− T s1,s2,s3S,Lα

y‖ ≤ s1‖x− y‖+ (1− s1)(1− s2)s3‖RLαx−RLαy‖
+ (1− s1)s2(1− s3)‖RSx−Rsy‖+ (1− s1)(1− s2)(1− s3)‖RLαRSx−RLαRSy‖

=
(
s1 + (1− s1)(1− s2)s3

)
‖x− y‖

+
(
(1− s1)s2(1− s3) + (1− s1)(1− s2)(1− s3)

)
‖RSx−RSy‖

= s‖x− y‖+ (1− s)‖RSx−RSy‖,

where s = s1 + (1− s1)(1− s2)s3. If ‖x‖ = ‖y‖, we have

‖T s1,s2,s3S,Lα
x− T s1,s2,s3S,Lα

y‖ ≤ s‖x− y‖+ (1− s)‖RSx−RSy‖

= s‖x− y‖+ (1− s)
∣∣∣∣ 2

‖x‖
− 1

∣∣∣∣ ‖x− y‖ =

(
s+ (1− s)

∣∣∣∣ 2

‖x‖
− 1

∣∣∣∣) ‖x− y‖.
Now, since ‖x‖ ≤ 1, we have

s+ (1− s)
∣∣∣∣ 2

‖x‖
− 1

∣∣∣∣ = s+ (1− s)
(

2

‖x‖
− 1

)
= 2s− 1 + (1− s) 2

‖x‖
≤ 2s− 1 + 2− 2s

‖x‖
=

1

‖x‖
.

This proves (5.2). The proof of (5.3) is exactly as in the proof of Proposition 2.1, and so the proof
is complete. �

Now with Proposition 5.1 in hand, we can deduce the following proposition, the same way
Proposition 2.2 was deduced from Proposition 2.1.

Proposition 5.2. Assume that ‖x‖ ≥ 1− β, ‖y‖ ≥ 1− β, then

‖T s1,s2,s3S,Lα
x− T s1,s2,s3S,Lα

y‖ ≤ ‖x− y‖
1− β

+ β.

While the family T s1,s2,s3S,Lα
has the same Lipschitz properties as the Douglas-Rachford operator,

an analogue result to Corollary 2.1 regarding the invariance would be more difficult to obtain, and
would not be discussed in this note.

5.2. Von-Neumann iteration scheme. Another interesting example arising from (5.1), is the
Von-Neumann operator, corresponding to the case s1 = 0, s2 = s3 = 1

2
. Since RA = 2PA − I, the

Von-Neumann operator is given by

T
0, 1

2
, 1
2

A,B x = PBPAx. (5.4)

Focusing again on the case A = S, B = Lα as defined in (1.3), we obtain the following explicit
formula,

PLαPSx =
x1
‖x‖

e1 + αe2 +
1

‖x‖

∞∑
j=3

xjej. (5.5)

Note that here we consider the infinite dimensional case (this is possible, as note in Remark 1.1).
As will be shown below, the result still holds in this case. For the Von-Neumann operator, we
have the following stronger result.

Proposition 5.3. Let H be a Hilbert space. Then for every x, y ∈ H,

‖PLαPSx− PLαPSy‖ ≤ max

{
1

‖x‖
,

1

‖y‖

}
‖x− y‖.
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In particular, if β ∈ [0, 1) and ‖x‖ ≥ 1− β, ‖y‖ ≥ 1− β, then

‖PLαPSx− PLαPSy‖ ≤
‖x− y‖
1− β

.

Proof. By (5.5), we have

PLαPSx− PLαPSy = Pe⊥2

(
x

‖x‖
− y

‖y‖

)
. (5.6)

Next, assume without loss of generality that ‖x‖ ≤ ‖y‖. Then we have

1

‖x‖2
‖x− y‖2 −

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2 =
‖y‖2

‖x‖2
− 2〈x, y〉

(
1

‖x‖2
− 1

‖x‖‖y‖

)
− 1

≥ ‖y‖
2

‖x‖2
− 2‖x‖‖y‖

(
1

‖x‖2
− 1

‖x‖‖y‖

)
− 1 =

‖y‖2

‖x‖2
− 2
‖y‖
‖x‖

+ 1 =

(
‖y‖
‖x‖
− 1

)2

≥ 0.

Therefore, ∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 1

‖x‖
‖x− y‖. (5.7)

Combining (5.6) and (5.7), we have

‖PLαPSx− PLαPSy‖ =

∥∥∥∥Pe⊥2

(
x

‖x‖
− y

‖y‖

)∥∥∥∥ ≤ ∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 1

‖x‖
‖x− y‖,

and the proof is complete. �

Proposition 5.3 implies the following.

Theorem 5.1. Let H be a Hilbert space and let α ∈ [0, 1]. Then there exists T : H→ H such that
‖T‖lip = 1

1−β , Tx = PLαPSx for all ‖x‖ ≥ 1− β, and we have

T (H) ⊆ B
[
0, 1 +

√
1 + α2

]
. (5.8)

Proof. The existence and Lipschitz property of T follow from Proposition 5.3 and Kirszbraun’s
Theorem (Theorem 2.2, which holds in the infinite dimensional case as well). To prove (5.8), note
that by (5.5), we have

‖PLαPSx‖ ≤
√

1 + α2. (5.9)

Hence, by Proposition 2.5 (which still holds true since Kirszbraun’s Theorem holds in the infinite
dimensional case), it follows that

sup
x∈B[0,1−β]

‖Tx‖ ≤ sup
‖x‖=1−β

‖PLαPSx‖+
1− β
1− β

≤ 1 +
√

1 + α2, (5.10)

Since T
∣∣
H\B(0,1−β) = PLαPS, combining (5.9) and (5.10) completes the proof. �

Applying Theorem 3.1 to the map obtained in Theorem 5.1 implies the following.

Theorem 5.2. Assume that H is a Hilbert space. Assume that α, β ∈ [0, 1), γ, ε ∈ (0, 1), and
R ≥ 1 +

√
1 + α2. Then there exists a map G : H→ H satisfying

sup
x∈H\B(0,1−β)

‖PLαPSx−Gx‖ ≤
(
1− (1− β)(1− γ)2

) (
2 + 2

√
1 + α2

)
. (5.11)
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and for every n ∈ N satisfying

n ≥
log
(

ε
128R

)
log
(
1− γ

2

) + 2, (5.12)

we have,

sup
x,y∈B[0,R]

‖Gnx−Gny‖ < ε.

Moreover, if H : B[0, R]→ B[0, R] is such that

sup
x∈B[0,R]

‖Gx−Hx‖ ≤ ε

200
,

then for every n ∈ N satisfying (5.12), we have

sup
x,y∈B[0,R]

‖Hnx−Hny‖ < ε.

Proof. By Remark 3.2 and (5.8), (5.11) follows. The rest of the proof follows from applying
Theorem 3.1 to the map obtained in Theorem 5.1. �
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