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Dedication from JB&AS in J. AustMS

Remark
We remark that it is fitting given the dedication of this article and
volume that Alf van der Poorten [1942-2010] wrote the foreword
to Lewin's “bible”. In fact, he enthusiastically mentions the
[log-sine] evaluation

17
—L (1) (E) — 4
"1 \3) ~ 6480"

and its relation with inverse central binomial sums.
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5520 (1967, 1015; 1968, 914]. Proposed by D. S. Mitrinovic, University of
Belgrade, Yugoslavia

Evaluate
= = sin Bz — o,
Evaluation of 11 ) dx,
—e =L X ay
with &, a;, §=1,2, - - -, m real numbers.

Note. The published solution for this problem is in error. Murray S. Klam-
kin remarks that it is to be expected that the given integral depend on all the
#’s and be symmetric in k5, ¢;. The formula obtained in the solution

in ky(a1 — a;)

=0y

does not involve & and is not symmetric as required. (k=0 must imply I=0.)
Accordingly the solution is withdrawn and we urge our readers to reconsider
the problem.

The maths world is becoming hybrid: and none to soon

The 4th international

workshop on Symbolic-Numeric Computation

SNC 2011 ==

June 7-9,2011, San Jose, California

Egm

hitp://vrvrw. cargo.wiu.ca/SNC2011/
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2011 A fine symbolic/numeric/graphic
(SNaG) challenge (MAA in press):

See http://carma.newcastle.edu.au/jon/sink.pdf.
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4. Introduction

e The Mahler measure of a polynomial of several variables has
been a subject of much study over the past thirty years.
e Very few closed forms are proven but more are conjectured.

e We provide systematic evaluations of various higher and
multiple Mahler measures using moments of random walks
and values of log-sine integrals.

e We also explore related generating functions for the log-sine
integrals and their generalizations.

CARMA>
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4. Introduction

e The Mahler measure of a polynomial of several variables has
been a subject of much study over the past thirty years.
e Very few closed forms are proven but more are conjectured.

e We provide systematic evaluations of various higher and
multiple Mahler measures using moments of random walks
and values of log-sine integrals.

e We also explore related generating functions for the log-sine
integrals and their generalizations.

e This work would be impossible without very extensive symbolic

and numeric computations. It also makes frequent use of the
new NIST Handbook of Mathematical Functions.
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4. Introduction

Abstract

e The Mahler measure of a polynomial of several variables has
been a subject of much study over the past thirty years.
e Very few closed forms are proven but more are conjectured.

e We provide systematic evaluations of various higher and
multiple Mahler measures using moments of random walks
and values of log-sine integrals.

e We also explore related generating functions for the log-sine
integrals and their generalizations.

e This work would be impossible without very extensive symbolic
and numeric computations. It also makes frequent use of the
new NIST Handbook of Mathematical Functions.

| intend to show off the interplay between numeric and symbolic
computing while exploring the three mathematical topics in my
title.
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4. Introduction

Other References

@ Joint with: Armin Straub (Tulane) and James Wan (UofN)

- and variously with: David Bailey (LBNL), David Borwein
(UWO), Dirk Nuyens (Leuven), Wadim Zudilin (UofN).
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- and variously with: David Bailey (LBNL), David Borwein
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® Most results are written up in FPSAC 2010, ISSAC 2011
(JB-AS: best student paper),RAMA, Exp. Math, J. AustMS,
Can. Math J., Theoretical CS. See:
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® This and related talks are housed at www.carma.newcastle.
edu.au/~jb616/papers.html#TALKS <CARMA>
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Multiple Polylogarithms:

. z
Loy, (2) = ) —a——ar

Lo
ny>-->ng>0

Thus, Lig1(2) = > o0 Z—Q Z’il 1 Specializing produces:

Jf
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Multiple Polylogarithms:
Voo (2) = )0

Lo
ny>-->ng>0

Thus, Lig1(2) =00 &= Zk ! 1 . Specializing produces:
e The polylogarithm of order k: Lig(z) = 3200, 20
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Multiple Polylogarithms:

. z
Ligy, ap(2) = ) TR T
ny>-->n,>0 1
Thus, Lig1(2) = > o0 Z—z 25;11 % Specializing produces:
e The polylogarithm of order k: Lix(z) = Y ", Zr.
o Multiple zeta values:

C(ai,...,ar) = Lig, . q.(1).
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Multiple Polylogarithms:

. z
Loy, (2) = ) —a——ar

Lo
ny>-->ng>0

Thus, Lig1(2) =00 &= Zk ! 1 Specializing produces:
e The polylogarithm of order k. Lig(z) = 3200, 20

o Multiple zeta values:
C(ai,...,ar) = Lig, . q.(1).

o Multiple Clausen (Cl) and Glaisher functions (Gl) of depth k
and weight w := ) a;:

. Im Lig, . a,(€?) if w even
Clal,---,ak (0) T { Re L1a1 (610) if w odd ’

[ ReLig,.. 4. (") ifweven
Glay,....a, (0) = { Im Lig, 4 (e?) ifwodd |-
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4. Introduction

Log-sine Integrals

The log-sine integrals are defined for n =1,2,... by

g
Lsy (o) := —/ log" ™!
0

and their moments for & > 0 given by

Ls*) (o) := —/ 0k logn—17k
0

2 sinZ’ de (1)

2 sing‘ dé. (2)

CCARMA>
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4. Introduction

Log-sine Integrals

The log-sine integrals are defined for n =1,2,... by

g
Lsy (o) := —/ log" ™!
0

and their moments for & > 0 given by

2 sinZ’ de (1)

Ls*) (o) := —/ 0k log" 17k |2 sing‘ de. (2)
0
e Lsy (o) = —0 and Ls{) (o) = Lsy (0), as in Lewin. In
particular,
sin(no)

L82 (U) = CIQ ((T) = i

n=1

> (3)

n

is the Clausen function which plays a prominent role. CARMA>
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4. Introduction

Moments of Uniform Random Walks

Definition (Moments)

For complex s the n-th moment function is

W (s) ::/ Ze%“i da
[0.1™ =1

Thus, W,, := W,,(1) is the expectation.

CCARMA>
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4. Introduction

Moments of Uniform Random Walks

Definition (Moments)

For complex s the n-th moment function is

W (s) ::/ Ze%“i da
[0.1™ =1

Thus, W,, := W,,(1) is the expectation.

e The integral for W,, is analytic precisely for Re s > —2.
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4. Introduction

Moments of Uniform Random Walks

Definition (Moments)
For complex s the n-th moment function is

n s

W (s) ::/ Ze%“i dzx
[0.1™ =1

Thus, W,, := W,,(1) is the expectation.

e The integral for W,, is analytic precisely for Re s > —2.
1905. Originated with Pearson, and Raleigh:

CCARMA>
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4. Introduction

Moments of Uniform Random Walks

Definition (Moments)
For complex s the n-th moment function is

n s

W (s) ::/ Ze%“i dzx
[0.1™ =1

Thus, W,, := W,,(1) is the expectation.

e The integral for W,, is analytic precisely for Re s > —2.

1905. Originated with Pearson, and Raleigh:

“What is probability at time n that the rambler is within
one unit of home?” CARWIAS
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Clearly W7 = 1. What about W5(1)?

11
Wy = / / ‘627”36 + ezmy‘ dedy =7
o Jo

4. Introduction
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Clearly W7 = 1. What about WW5(1)?

11
Wy = / / ‘627”36 + ezmy‘ dedy =7
o Jo

— Mathematica 7 and Maple 14 think the answer is 0.

CCARMA>
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Clearly W7 = 1. What about WW5(1)?

4. Introduction

11
Wy = / / ‘627”36 + ezmy‘ dedy =7
o Jo

— Mathematica 7 and Maple 14 think the answer is 0.

e There is always a 1-dimension reduction

W,(s) = /
(s) p»

n—1
_ 1+ Z e?ﬂ'xki
/[;vl]n_l k=1

s

da

627T"Eki

d(xl, v ,xn_l)
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Clearly W7 = 1. What about WW5(1)?

4. Introduction

11
Wy = / / ‘627”36 + ezmy‘ dedy =7
o Jo

— Mathematica 7 and Maple 14 think the answer is 0.

e There is always a 1-dimension reduction

W,(s) = /
(s) p»

627T"Eki
n—1
— / 14+ § :eQﬂxki
[0,1]71—1 k=1
CCARMA>

1/4
Wy = 4/ cos(mx) dz = A
0

J.M. Borwein Mabhler Measures

s

da

d(xl, v ,xn_l)

e So

4
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n > 3 highly nontrivial and n > 5 not well understood.

e Similar problems get much more difficult in five or more
dimensions — e.g., Bessel moments, Box integrals, Ising
integrals (work with Bailey, Broadhurst, Crandall, ...).

CCARMA>
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n > 3 highly nontrivial and n > 5 not well understood.

e Similar problems get much more difficult in five or more
dimensions — e.g., Bessel moments, Box integrals, Ising
integrals (work with Bailey, Broadhurst, Crandall, ...).

- In fact, W5 = 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley National
Laboratory.

- Bailey and | have a general project to develop symbolic
numeric techniques for (meaningful) multi-dim integrals.
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n > 3 highly nontrivial and n > 5 not well understood.

e Similar problems get much more difficult in five or more
dimensions — e.g., Bessel moments, Box integrals, Ising
integrals (work with Bailey, Broadhurst, Crandall, ...).

- In fact, W5 = 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley National
Laboratory.

- Bailey and | have a general project to develop symbolic
numeric techniques for (meaningful) multi-dim integrals.

CCARMA>

J.M. Borwein Mahler Measures



9. Multiple Polylogarithms
10. Log-sine Integrals
11. Random Walks

4. Introduction

16. Mahler Measures
17. Carlson’s Theorem

n > 3 highly nontrivial and n > 5 not well understood.

e Similar problems get much more difficult in five or more
dimensions — e.g., Bessel moments, Box integrals, Ising
integrals (work with Bailey, Broadhurst, Crandall, ...).

- In fact, W5 = 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley National
Laboratory.

- Bailey and | have a general project to develop symbolic
numeric techniques for (meaningful) multi-dim integrals.

When the facts change, | change my mind. What do you do, sir?
— John Maynard Keynes in Economist Dec 18, 1999.

CCARMA>
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One 1500-step Ramble: a familiar picture

J.M. Borwein

Mahler Measures

2D and 3D lattice walks are
different:

A drunk man will
find his way
home but a
drunk bird may
get lost forever.
— Shizuo
Kakutani

CCARM
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One 1500-step Ramble: a familiar picture

2D and 3D lattice walks are
different:

A drunk man will
find his way
home but a
drunk bird may
get lost forever.
— Shizuo
Kakutani

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
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One 1500-step Ramble: a familiar picture

2D and 3D lattice walks are
different:

A drunk man will
find his way
home but a
drunk bird may
get lost forever.
— Shizuo
Kakutani

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
e 1D or 2D lattice: probability one of returning to the origin. “CARMA>
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1000 three-step Rambles: a less familiar picture?

4. Introduction

CCARMA>
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Mahler Measures (1923) in several variables

The logarithmic Mahler measure of a (Laurent) polynomial P:

11 1 ' '
M(P) :_/ / / log\P <62m917.” 7€2ﬂ19n)’d01_..d0n.
0 JO 0

CCARMAD
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o M := P+ exp(u(P)) is multiplicative.
e n=1: Pis a product of cyclotomics < M;(P) = 1.
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4. Introduction

17. Carlson’s Theorem

Mahler Measures (1923) in several variables

The logarithmic Mahler measure of a (Laurent) polynomial P:

11 1 ' '
M(P) :_/ / / log\P <62m917.” 7€2ﬂ19n)’d01_..d0n.
0 JO 0

o M := P+ exp(u(P)) is multiplicative.

e n=1: Pis a product of cyclotomics < M;(P) = 1.
Lehmer's conjecture (1931) is: otherwise
Mi(P)>Mi(1—z+4a2%—at+2° —ab + 27 — 2% + 219).
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17. Carlson’s Theorem

Mahler Measures (1923) in several variables

The logarithmic Mahler measure of a (Laurent) polynomial P:

11 1 ' '
M(P) :_/ / / log\P <62m917.” 7€2ﬂ19n)’d01_..d0n.
0 JO 0

o M := P+ exp(u(P)) is multiplicative.

e n=1: Pis a product of cyclotomics < M;(P) = 1.
Lehmer's conjecture (1931) is: otherwise
Mi(P)>Mi(1—z+4a2%—at+2° —ab + 27 — 2% + 219).

e 1(P) turns out to be an example of a period.
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9. Multiple Polylogarithms
10. Log-sine Integrals

11. Random Walks

16. Mahler Measures

4. Introduction

17. Carlson’s Theorem

Mahler Measures (1923) in several variables

The logarithmic Mahler measure of a (Laurent) polynomial P:

11 1 ' '
M(P) :_/ / / log\P <62m917.” 7€2ﬂ19n)’d01_..d0n.
0 JO 0

o M := P+ exp(u(P)) is multiplicative.

e n=1: Pis a product of cyclotomics < M;(P) = 1.
Lehmer's conjecture (1931) is: otherwise
Mi(P)>Mi(1—z+4a2%—at+2° —ab + 27 — 2% + 219).

e 1(P) turns out to be an example of a period.

e When n =1 and P has integer coefficients M;(P) is an
algebraic integer.
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9. Multiple Polylogarithms
10. Log-sine Integrals

11. Random Walks

16. Mahler Measures

4. Introduction

17. Carlson’s Theorem

Mahler Measures (1923) in several variables

The logarithmic Mahler measure of a (Laurent) polynomial P:

11 1 ' '
M(P) :_/ / / log\P <62m917.” 7€2ﬂ19n)’d01_..d0n.
0 JO 0

o M := P+ exp(u(P)) is multiplicative.

e n=1: Pis a product of cyclotomics < M;(P) = 1.
Lehmer's conjecture (1931) is: otherwise
Mi(P)>Mi(1—z+4a2%—at+2° —ab + 27 — 2% + 219).

e 1(P) turns out to be an example of a period.

e When n =1 and P has integer coefficients M;(P) is an
algebraic integer.

e In several dimensions life is harder.

- We shall see remarkable recent results — many more
discovered than proven — expressing p(P) arithmetically. LARMA>
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9. Multiple Polylogarithms
10. Log-sine Integrals

11. Random Walks

16. Mahler Measures

17. Carlson’s Theorem

4. Introduction

Carlson’s Theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for Re (z) > 0, its growth on the imaginary axis
is bounded by €%, |c| < 7, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.
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4. Introduction

Carlson’s Theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for Re (z) > 0, its growth on the imaginary axis
is bounded by €%, |c| < 7, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for Re (s) > —2 when n > 2).
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10. Log-sine Integrals

11. Random Walks

16. Mahler Measures

17. Carlson’s Theorem

Carlson’s Theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for Re (z) > 0, its growth on the imaginary axis
is bounded by €%, |c| < 7, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.
e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for Re (s) > —2 when n > 2).
e There is a lovely 1941 proof by Selberg of the bounded case.
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4. Introduction 9. Multr|p!e Polylogarithms
10. Log-sine Integrals

11. Random Walks

16. Mahler Measures

17. Carlson’s Theorem

Carlson’s Theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for Re (z) > 0, its growth on the imaginary axis
is bounded by €%, |c| < 7, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for Re (s) > —2 when n > 2).

e There is a lovely 1941 proof by Selberg of the bounded case.
e The theorem lies under much of what follows. CARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

A Little History: from a vast literature

17. Short Random Walks

‘;:/:" {,7.\. i\

/'}7 o S 7,

17 W h
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). Pr(x) ~ 27”’6_9‘32/” (Nature, 1905).
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41. Derivative values of W3, Wy

A Little History: from a vast literature

17. Short Random Walks
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L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). Pr(x) ~ 27”’6_9‘32/” (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3,
33. Probability and Bessel J

41. Derivative values of W3, Wy

A Little History: from a vast literature

17. Short Random Walks

2 iy

i7 AT
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). Pr(x) ~ %”’e‘l’?/” (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3,
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

it ’ 5

i7 AT
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). Pr(x) ~ 27”’6_9‘32/” (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he studied
in 1880 (diffusion eq'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

A Little History: from a vast literature

17. Short Random Walks

P gyt

/: ‘P4 iy
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). Pr(x) ~ 27”’6_9‘32/” (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he studied
in 1880 (diffusion eq'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography. TRRWIES
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). Pr(x) ~ 27”’6_9‘32/” (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he studied
in 1880 (diffusion eq'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography. TRRWIES

- Appear in quantum chemistry, in quantum physics as hexagonal and diamond lattice integers, etc ...
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|k Jof2[4 |6 [8 [10 |
Walk) [1]2]6 |20 |70 | 252
Wi(k) [ 1|3 15| 93 | 639 | 4653
Wa(k) | 1|4 28] 256 | 2716 | 31504
Ws(k) | 1|5 | 45 | 545 | 7885 | 127905
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|

2|14 [6 |8 | 10 \
216 [20 |70 252
3115[93 |[639 | 4653
4
5

28 | 256 | 2716 | 31504
45 | 545 | 7885 | 127905

0
1
1
1
1

e Can get started by rapidly computing many values naively as
symbolic integrals.
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25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|

2|14 [6 |8 | 10 \
216 [20 |70 252
3115[93 |[639 | 4653
4
5

28 | 256 | 2716 | 31504
45 | 545 | 7885 | 127905

0
1
1
1
1

e Can get started by rapidly computing many values naively as
symbolic integrals.

o Observe that Wa(s) = (},) for s > —1.
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. Combinatorics

17. Short Random Walks EHEAE funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J

. Derivative values of W3, Wy

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|

2|14 [6 |8 | 10 \
216 [20 |70 252
3115[93 |[639 | 4653
4
5

28 | 256 | 2716 | 31504
45 | 545 | 7885 | 127905

0
1
1
1
1

e Can get started by rapidly computing many values naively as
symbolic integrals.

o Observe that Wa(s) = (},) for s > —1.
e Entering 1,5,45,545 in the OIES now gives “The function

Ws(2n) (see Borwein et al. reference for definition).” S
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W, (k) at odd integers

(k=1 [k=3 |k=5 |k=7 |k=9
1.27324 | 3.39531 | 10.8650 | 37.2514 [ 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 [ 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2806 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O WIN|S

CCARMA>
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19. Combinatorics
. Meijer-G functions
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

17. Short Random Walks

W, (k) at odd integers

(k=1 [k=3 |k=5 |k=7 |k=9
1.27324 | 3.39531 | 10.8650 | 37.2514 [ 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 [ 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2806 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

Please, memorize this number!

O WIN|S

CCARMA>
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. Combinatorics

. Meijer-G functions

. Hypergeometric values of W3, Wy
. Probability and Bessel J

. Derivative values of W3, Wy

17. Short Random Walks

at odd integers

(k=1 [k=3 |k=5 |k=7 |k=9
1.27324 | 3.39531 | 10.8650 | 37.2514 [ 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 [ 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2806 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O WIN|S

Please, memorize this number!

During the three years which | spent at Cambridge my time was wasted, as far as the academical studies were
concerned, as completely as at Edinburgh and at school. | attempted mathematics, and even went during the
summer of 1828 with a private tutor (a very dull man) to Barmouth, but | got on very slowly. The work was
repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience
was very foolish, and in after years | have deeply regretted that | did not proceed far enough at least to understand

something of the great leading principles of mathematics, for men thus endowed seem to have an extra sense. —gARMVIA >

Autobiography of Charles Darwin
J.M. Borwein Mahler Measures




. Combinatorics

17. Short Random Walks - [MHdTfEr=C funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

Resolution at even values

e General even formula counts n-letter abelian squares zm(z) of
length 2k.

— Shallit and Richmond (2008) give asymptotics:

- w (0w

ai+...tan=k
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. Combinatorics
17. Short Random Walks - [MHdTfEr=C funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

Resolution at even values

e General even formula counts n-letter abelian squares zm(z) of
length 2k.

— Shallit and Richmond (2008) give asymptotics:

- w (0w

ai+...tan=k

e Known to satisfy convolutions:
k

2
Warens(20) = 3 () W (2000200~ )

J=0

CCARMA>
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. Combinatorics

. Meijer-G functions

. Hypergeometric values of W3, Wy
. Probability and Bessel J

. Derivative values of W3, W,

17. Short Random Walks

Resolution at even values

e General even formula counts n-letter abelian squares zm(z) of
length 2k.
— Shallit and Richmond (2008) give asymptotics:

- w (0w

ai+...tan=k

e Known to satisfy convolutions:
k

2
Warens(20) = 3 () W (2000200~ )

§=0
e Has recursions such as:
(k4 2)2W3(2k 4 4) — (10k? + 30k + 23)W3(2k + 2)
+9(k + 1)2W5(2k)

Il
<]
=
=

>



19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

Analytic continuation: From Carlson’s Theorem

e So integer recurrences yield complex functional equations. Viz

(5+4)*W3(s+4)—2(55*+305+46) W3 (s54+2)+9(s4+2)?W3(s) = 0.

CCARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

Analytic continuation: From Carlson’s Theorem

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s+4)—2(55*+305+46) W3 (s54+2)+9(s4+2)?W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems], some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

Analytic continuation: From Carlson’s Theorem

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s+4)—2(55*+305+46) W3 (s54+2)+9(s4+2)?W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

— W3(s) has a simple pole at —2 with residue ﬁ7 and other
simple poles at —2k with residues a rational multiple of Res_s.

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems], some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.

CCARMA>
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17. Short Random Walks - [MHdTfEr=C funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

Odd dimensions look like 3

-5 \4 -3\ -2 -1 0 1 2
o
Ll
N
. CCARMA>
e JW proved zeroes near to but not at integers: —
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. Combinatorics
17. Short Random Walks - [MHdTfEr=C funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

Odd dimensions look like 3

e JW proved zeroes near to but not at integers: W3(—2n —1) | eAmMA-

J.M. Borwein Mahler Measures




19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

Some even dimensions look more like 4

L

L: Wy(s) on [-6,1/2]. R: W5 on [—6,2] (T), Ws on [—6,2] (B).
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19. Combinatorics

25. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

Some even dimensions look more like 4

L

L: Wy(s) on [-6,1/2]. R: W5 on [—6,2] (T), Ws on [—6,2] (B).
e The functional equation (with double poles) for n =4 is

(s +4)*Wy(s+4) — 4(s+3)(5s* + 305 + 48)Wy(s + 2)
+ 64(s+2)*Way(s) =0
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19. Combinatorics

25. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

Some even dimensions look more like 4

L

L: Wy(s) on [-6,1/2]. R: W5 on [—6,2] (T), Ws on [—6,2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)*Wy(s+4) — 4(s+3)(5s* + 305 + 48)Wy(s + 2)
+ 64(s+2)*Way(s) =0
e There are (infinitely many) multiple poles if and only if 4|n.

RVIA>
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19. Combinatorics

25. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

Some even dimensions look more like 4

L

L: Wy(s) on [-6,1/2]. R: W5 on [—6,2] (T), Ws on [—6,2] (B).
e The functional equation (with double poles) for n =4 is

(s +4)*Wy(s+4) — 4(s+3)(5s* + 305 + 48)Wy(s + 2)
+ 64(s+2)*Way(s) =0

e There are (infinitely many) multiple poles if and only if 4[n.
e Why is W, positive on R? “CARMA™

J.M. Borwein Mabhler Measures




. Combinatorics
17. Short Random Walks - [t funct.lons -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

Meijer-G functions (1936 )

Definition

amn <a1,...,ap
Pa \ by,... b,

/ 1 Db =) [I}2i T — aj + 5) N
H] =n-+1 ( - 5) g:erl F(l - bj + 8)

CCARMA>
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. Combinatorics
17. Short Random Walks - [t funct.lons -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

Meijer-G functions (1936 )

Definition

amn <a1,...,ap .
Pa \ by,... b,

/ 1D — ) [} T —a; +5) "
H] =n+1 '

L(aj = 8) [[jepm T = b; +5)

e Contour L lies between poles of I'(1 —a; — s) and of I'(b; + s).

CCARMAD
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. Combinatorics

17. Short Random Walks - [t funct.lons -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

Meijer-G functions (1936 )

Definition

amn <a1,...,ap .
Pa \ by,... b,

/ (bj =) [[j-1 T(1 —a; + ) "
H] n+1 '

—3) §:m+1 I'1—0b;+s)

e Contour L lies between poles of I'(1 —a; — s) and of I'(b; + s).

- A broad generalization of hypergeometric functions —
capturing Bessel Y, K and much more.
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J.M. Borwein Mahler Measures



. Combinatorics
17. Short Random Walks - [t funct.lons -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

Meijer-G functions (1936 )

Definition

amn <a1,...,ap
Pa \ by,... b,

/ bj — ) [[jo T —aj +5)
H] n+1

5
—3) §:m+1 I'1—0b;+s)

e Contour L lies between poles of I'(1 —a; — s) and of I'(b; + s).

- A broad generalization of hypergeometric functions —
capturing Bessel Y, K and much more.

- Important in CAS — if better hidden; often lead to
superpositions of generalized hypergeometric terms , Fy,.

CCARMA>
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Meijer-G forms for 113

Theorem (Meijer form for W)

For s not an odd integer

Ws(s) =

CCARMA>

J.M. Borwein Mahler Measures



. Combinatorics
17. Short Random Walks - [t funct.lons -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

Meijer-G forms for 113

Theorem (Meijer form for W)

For s not an odd integer

g Ta+s) 1,1,1
Wi = g 8 (3

e First found by Crandall via CAS.
e Proved using residue calculus methods.
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. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, Wy

Meijer-G forms for 113

Theorem (Meijer form for W)

For s not an odd integer

I+ 3 1,1,1
W3<s>=2G§%,(1 !
29 2

~—

VAT(=3)

e First found by Crandall via CAS.
e Proved using residue calculus methods.
e W3(s) is among few non-trivial Meijer-G with a closed form.

(o] 1v
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. Meijer-G functions

. Hypergeometric values of W3, Wy
. Probability and Bessel J

. Derivative values of W3, Wy

17. Short Random Walks

Meijer-G forms for 113

Theorem (Meijer form for W)

For s not an odd integer
NG 1,1,1 |1
W3(3) = 25 Gy ( ’s’ s ) :
ﬁ F(_ ) 5 %a 27 9 4
e First found by Crandall via CAS.

e Proved using residue calculus methods.
e Ws(s) is among few non-trivial Meijer-G with a closed form.

~—

(o] 1v

The most important aspect in solving a mathematical problem is the
conviction of what is the true result. Then it took 2 or 3 years using
the techniques that had been developed during the past 20 years or so.
— Lennart Carleson (From 1966 IMU address on his positive solution gfcm,m
Luzin's problem). 1
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“WERE LOOKING FOR OUR LOCAL POST OFFICE"
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Meijer-G form for 1,

Theorem (Meijer form for Wy)

For Re s > —2 and s not an odd integer
28F(1+§)GQ2 1,4551,1
m I'(-=%) L

Way(s) = B
2 2

s
2

“WERE LOOKING FOR OUR LOCAL POST OFFICE" CCARMIAS
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Meijer-G form for 1,

Theorem (Meijer form for Wy)
For Re s > —2 and s not an odd integer

2T1+3%) o2 1,4551,1
1
™ T(-3) -

Way(s) = B
2 2

1. (5

s
2

e Not helpful for odd integers. We must again look elsewhere ...

“WERE LOOKING FOR OUR LOCAL POST OFFICE" CCARMIAS
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Theorem (Meijer form for Wy)
For Re s > —2 and s not an odd integer

2T1+3%) o2 1,4551,1
1
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Theorem (Meijer form for Wy)
For Re s > —2 and s not an odd integer

2T1+3%) o2 1,4551,1
1
™ T(-3) -

Way(s) = B
2 2

1. (5

s
2

e Not helpful for odd integers. We must again look elsewhere ...

“WERE LOOKING FOR OUR LOCAL POST OFFICE" CCARMIAS

J.M. Borwein Mahler Measures



19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

Visualizing Wy in the complex plane
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30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

Visualizing Wy in the complex plane

e Easily drawn now in Mathematica from recursion and
Meijer-G form.
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

Visualizing Wy in the complex plane

e Easily drawn now in Mathematica from recursion and
Meijer-G form.
— To (L) each value is coloured differently (black is zero and
white infinity). To (R) we colour by quadrants. Note the poles
and zeros. LARMA>
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Simplifying the Meijer integral

i
e We (humans) were able to provably take the limit:
b 6
x 5111111 o nt1) (%)
Wal—1) = = p. (4722202722202 |) - & n
a1 476< 1,1,1,1,1,1 ) 4;::0 46n
x 111111 ” 333333
= _F 2’2"2’2’2’21 R 2’2’2’2’2’21‘
4° 5< 1,1,1,1,1 >+646 5( 2,2,2,2,2 >
CCARMA>
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. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy
33. Probability and Bessel J
41. Derivative values of W3, Wy

Simplifying the Meijer integral

w
e We (humans) were able to provably take the limit:
D 6
- 5 1 1 1 1 1 1 P (4n+1)(“’)
Wal—1) = = p. (4722202722202 |) - & n
a1 476< 1,1,1,1,1,1 ) 4;::0 46n
53535333 n 354433
= —¢Fs (272722222021 ) 4 —op (220202 .
¢ 5< 1,1,1,1,1 >+646 5( 2,2,2,2,2 1>
e We have proven the corresponding result for Wy (1) LARMA >
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Hypergeometric values of W3, Wy: from Meijer-G values.

With much work involving moments of elliptic integrals we finally
obtain:

Theorem (Tractable hypergeometric form for 1W3)
(a) Fors# —3,—5,—17,... , we have

3s+3/2 1 1 542 542 s42
W3(8)= 5(3+2,S+2) 3F2 2 §+3 g

2 1

Y

(b) For every natural number k = 1,2, ...,

2k 111
Wa(—2k — 1) = BE) o bEE 1)
24k+132k kE+1,k+1|4

J.M. Borwein Mahler Measures



19. Combinatorics
25. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy

33. Probability and Bessel J

41. Derivative values of W3, Wy

A Discovery Demystified: on piecing all this together
We first proved that:

k 2 1/2,—k, —k
Wa(2k) = Z <a1,a2,a3> :3F2< 11 ’4).

a1+az+az=k

=:V3(2k)
We discovered numerically that: V3(1) = 1.57459 — .12602652i
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25. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy

33. Probability and Bessel J
41. Derivative values of W3, Wy

A Discovery Demystified: on piecing all this together
We first proved that:

k 2 1/2,—k, —k
Wa(2k) = Z <a1,a2,a3> :3F2< 11 ’4).

a1+az+az=k

=:V3(2k)
We discovered numerically that: V3(1) = 1.57459 — .12602652i

Theorem (Real part)
For all integers k we have W3(k) = Re (V3(k)).
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25. Meijer-G functions

30. Hypergeometric values of W3, Wy
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17. Short Random Walks

. Derivative values of W3, W,

A Discovery Demystified: on piecing all this together
We first proved that:

k 2 1/2,—k, —k
Wa(2k) = Z <a1,a2,a3> :3F2< 11 ’4).

a1+az+az=k

=:V3(2k)
We discovered numerically that: V3(1) = 1.57459 — .12602652i

Theorem (Real part)

For all integers k we have W3(k) = Re (V3(k)).

We have a habit in writing articles published in scientific journals to
make the work as finished as possible, to cover up all the tracks, to not
worry about the blind alleys or describe how you had the wrong idea first.
... So there isn’t any place to publish, in a dignified manner, what you
actually did in order to get to do the work. — Richard Feynman (Nobel

CCARMA>

acceptance 1966) .

J.M. Borwein Mabhler Measures
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Closed Forms for W3

e We then confirmed 175 digits of
Ws5(1) ~ 1.57459723755189365749 . ..
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

17. Short Random Walks

Closed Forms for W3

e We then confirmed 175 digits of
Ws5(1) ~ 1.57459723755189365749 . ..

e Armed with a knowledge of elliptic integrals:

16v/472  30(3 )6 6/m>
Ws(1) = r(d)s 8 /A (-1 W3(—1)’ (7)
116 L
R 0] ®

s 2
Here ((s) := B(s,s) = F221)'

CCARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

Closed Forms for W3

e We then confirmed 175 digits of
Ws5(1) ~ 1.57459723755189365749 . ..

e Armed with a knowledge of elliptic integrals:

16v/4 72 n ( )6
I'(3)° 8v/4

1\6 3
wy(on) = SLE° B o <1) (8)

Ws(1) =

8/4nt  4Arm? 3
T 2
Here 3(s) := B(s,s) = 1‘2;?@)'
e Obtained via singular values of the elliptic integral and -
Legendre's identity. <LARMA>
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Probability: Bessel function representations

1906. J.C. Kluyver (1860-1932) derived the cumulative radial
distribution function (P,,) and density (p,) of the n-step distance:

P,(t)=t /000 Ji(zt) Jy(x) dx

pn(t) =1t /000 Jo(zt) Jy(x)xdx (n>4) 9)

where J,,(z) is a Bessel function of the first kind
e See also Watson (1932, §49) — 3-dim walks are elementary.

e From (11) below, we find

Pn(1) = Res—a (Wii1) (n#4).  (10)
o As po(a) = mﬂ%, we check in Maple that the following
code returns R = 2/(1/37) symbolically: CARRIAS

R:=identify(evalf [20] (int (BesselJ(0,x) "3*x,x=0..infinity)))

J.M. Borwein Mabhler Measures
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A Bessel Integral for W,

nt1 . ,
e Now P,(1) = % = nil (Pearson's original question).
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17. Short Random Walks

A Bessel Integral for W,

n+1
e Now P,(1) = ']OgLOj)Ll = 7L+1 (Pearson's original question).

e Broadhurst used (9) for 2k > s > —% to write

) L(1+3%) [ 1d
gs+1-k 2 / 2k—s—1 d
L(k—3) Jo . xdz JO (z)dz,

a useful oscillatory 1-dim integral (used below).

Wy(s) =

Integrands for Wy(—1) (blue) and
Wy (1) (red) on [r, 4w from (12)

CARMA>
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17. Short Random Walks

A Bessel Integral for W,

n+1
e Now P,(1) = ']OgLOj)Ll = 7L+1 (Pearson's original question).

e Broadhurst used (9) for 2k > s > —% to write

) L(1+3%) [ 1d\*
- — 9stl-k 2 / 2k—s—1 [ n(\d
Wh(s) = =2 9 x — | Jy(z)dez,

a useful oscillatory 1-dim integral (used below).
e Thence
e} fo%) d
Wn(-1) :/ Jo (x)dz, Wy(1) :n/ Jl(fE)Jo(a:)"*l%.
0 0
(12)

Integrands for Wy(—1) (blue) and
Wy (1) (red) on [r, 4w from (12)

CARMA>
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The Densities for n = 3,4 are Modular

Let o(x) := 7. Then ¢ is an involution on [0, 3] sending [0, 1] to [1, 3]:

I+
4z
ps(z) = m ps(o(x)).

So 3p4(0) = p3(3) = ﬁ,p(l) = 0o. We found:

2

The densities p3 (L) and p4 (R)
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

The Densities for n = 3,4 are Modular

Let o(x) := 7. Then ¢ is an involution on [0, 3] sending [0, 1] to [1, 3]:

I+
4z
ps(z) = m ps(o(x)).

So 2p4(0) = p3(3) = g,p(l) = 00. We found:

2 2)2
2/3a 1,210? (9-a?) 23 o
p3(a) = ————+ 2/ a2 | T - 273
m (3+ a?) 1 (3 +a?) T AG3(3+a?,3(1—-a2)?/?)

where AGg is the cubically convergent mean iteration (1991):

a+ 2b a2+ab+b2)1/3

AG3(a,b) := 3 ®<b< 3

The densities p3 (L) and p4 (R)

J.M. Borwein Mabhler Measures
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. Hypergeometric values of W3, Wy
. Probability and Bessel J

17. Short Random Walks

. Derivative values of W3, W,

Formula for the ‘shark-fin' py4
We ultimately deduce on 2 < o <4 a hyper-closed form:

2 V16 — a2 111116 - a?)’
pa(@) = — sFy | 25777 ( 4) - (13)
T « 56 108 «v
+ py from (13) vs 18-terms of series
7/3 —6
v Proves p4(2) = 23\/3 L) "=

VB yy(—1) &~ 0.494233 < L

e Marvelously, we found — and proved
by a subtle use of distributional Mellin
transforms — that on [0, 2] as well:

CCARMA>
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. Meijer-G functions

. Hypergeometric values of W3, Wy
. Probability and Bessel J

17. Short Random Walks

. Derivative values of W3, W,

Formula for the ‘shark-fin' py4
We ultimately deduce on 2 < o <4 a hyper-closed form:

2 VI6—a? (; 1 (16—@2)3)

(13)

pale) = 72 «

+ py from (13) vs 18-terms of series

V' Proves py(2) = 237\/; r(3) 0

VB yy(—1) &~ 0.494233 < L

e Marvelously, we found — and proved
by a subtle use of distributional Mellin
transforms — that on [0, 2] as well:

(16 — a2)3
108 a4
CCARMA>

(Discovering this Re brought us full circle.) o

J.M. Borwein Mahler Measures

2 \/16—o<2
2

™

111
IR
p4(a) = R(? 3F2 2§212
67

6



17. Short Random Walks

19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Deri ve values of W3, Wy

Densities for 5 < n < 8 (and large n approximation)

- 035 P
03sf N ¥/
D 030 / \
030fF N / 3
N 025 y N
025F N / A\
s N 020 y. )
o5k 015 N\
010F 010 N
/ \
005F b 0.05
2 3 4 5 1 2 3 4 5 6
030 y
030 N\ ,/ \
A\ 025 )
025 ) A\
\ \
\ 020F )
020F \ )
\ 3
\ )
01sf 3
0.15F "\ D
\ \
: o010F A
0.10F “\
005F 005},
3 4 5 6 7 2 4 6

8

. Borwei Mahler Measures
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. Hypergeometric values of W3, Wy
. Probability and Bessel J

. Derivative values of W3, W,

Densities for 5 < n < 8 (and large n approximation)

PR 035 P
03s5F ~ \ 4
D 030 /
N P \
030f N / R
y N 025 y N
025F N / y
/ N 0.20 y R
020F A\ / N
y A Y, \
ok 015 \
g/ A\
p 3
o10f \ 010
005, h 005
1 2 3 4 5 1 2 3 4 5 6

Both payt4, ponts are n-times continuously differentiable for x > 0
< ‘2 [ - ” - . ”
(pn(z) ~ Ze=/m). So “four is small” but “eight is large.

e 030 y
030F y N\ ,/ \
/ "\ 025 p )
0.25F p \ y 3
) / A
\ 020F / A
020F \ \
) \
3 015f \
0.15F "\ D
3 \
: o010F A
0.10F “\
005F 005},
1 2 3 4 5 6 7 2 4 6 8
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The Five Step Walk

e The functional equation for Wj is:

225(s +4)% (s + 2)2W5(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+  (s+6)Ws5(s +6) + (s + 4)2(259(s + 4)? + 104) W5 (s + 2).

J.M. Borwein Mabhler Measures
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The Five Step Walk

e The functional equation for Wj is:

225(s +4)% (s + 2)2W5(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+  (s+6)Ws5(s +6) + (s + 4)2(259(s + 4)? + 104) W5 (s + 2).

e We deduce the first two poles — and so all — are simple since
lim (s +2)*Ws(s) = 557, (285 W5(0) = 201 W5(2) + 16 Ws(4)) = 0
s——
4
lim (s +4)2Ws(s) = —=—= (5 W5(0) — W5(2)) = 0.
s—>—4 225

CCARMA>
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. Hypergeometric values of W3, Wy
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The Five Step Walk

e The functional equation for Wj is:

225(s +4)% (s + 2)2W5(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+  (s+6)Ws5(s +6) + (s + 4)2(259(s + 4)? + 104) W5 (s + 2).

e We deduce the first two poles — and so all — are simple since

4
lim (s + 2)2Ws(s) = 35 (285 W5(0) — 201 W5(2) + 16 W5(4)) =0
s——

i (5 + 4775 (s) = — 5= (3W5(0) — Ws(2)) = 0.

o We stumbled upon

CCARMA>
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17. Short Random Walks - [MHdTfEr=C funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

The Five Step Walk

e The functional equation for Wj is:

225(s +4)% (s + 2)2W5(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+  (s+6)Ws5(s +6) + (s + 4)2(259(s + 4)? + 104) W5 (s + 2).

e We deduce the first two poles — and so all — are simple since

4
lim (s + 2)2Ws(s) = 35 (285 W5(0) — 201 W5(2) + 16 W5(4)) =0
s——

i (5 + 4775 (s) = — 5= (3W5(0) — Ws(2)) = 0.

o We stumbled upon

7?7 Is there a hyper-closed form for Ws(F1) 7?7 AR
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25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W5 and ps: Bessel integrals are hard

e We only knew Res_4(W5) numerically — but to 500 digits:
(Bailey in about 5.5hrs on 1 MacPro core).
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25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

W5 and ps: Bessel integrals are hard

e We only knew Res_4(W5) numerically — but to 500 digits:
(Bailey in about 5.5hrs on 1 MacPro core).
— Sidi-"mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.

CCARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W5 and ps: Bessel integrals are hard

e We only knew Res_4(W5) numerically — but to 500 digits:
(Bailey in about 5.5hrs on 1 MacPro core).
— Sidi-"mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.
— July 2011. 75(2) was identified (with help from QFT)!

2 13 2 1

15(2) = 5oe7s(l) — 5l ()" (14)

CCARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W5 and ps: Bessel integrals are hard

e We only knew Res_4(W5) numerically — but to 500 digits:
(Bailey in about 5.5hrs on 1 MacPro core).
— Sidi-"mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.
— July 2011. 75(2) was identified (with help from QFT)!

2 13 2 1

75(2) ﬁ%( ) — 5t rs(1) (14)
e Here r5(k) := Res(_ay)(W5). Other residues are then
combinations as follows:
CCARMA>
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19. Combinatorics
25. Meijer-G functions
17. Short Random Walks 30. Hypergeometric values of W3, Wy

33. Probability and Bessel J

41. Derivative values of W3, Wy

W5 and ps: Bessel integrals are hard

e We only knew Res_4(W5) numerically — but to 500 digits:
(Bailey in about 5.5hrs on 1 MacPro core).
— Sidi-"mW" method used: i.e., Gaussian quadrature on
intervals of [nm, (n + 1)7] plus Richardson-like extrapolation.
— July 2011. 75(2) was identified (with help from QFT)!
7 13 2 1
2)=—r5(1) — — ———. 14
T5( ) 225T5( ) 5l 7"5(1) ( )
e Here r5(k) := Res(_gp)(W5). Other residues are then
combinations as follows:
e From the Ws-recursion: given r5(0) = 0,75(1) and 75(2) we have

k*rs(k) — (54 28k + 63k + T0k® 4+ 35k*) r5(k + 1)
225(k + 1)2(k + 2)2
(285 + 518k + 259 k%) 75 (k + 2) CARA
225 (k + 2)2 '

J.M. Borwein Mahler Measures

7"5(k+3):
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. Combinatorics
17. Short Random Walks - [MHdTfEr=C funct.mns -
. Hypergeometric values of W3, Wy
. Probability and Bessel J
. Derivative values of W3, W,

Bessel integrals be hard

Figure: The series at zero and ps.
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W5 and ps: Bessel integrals can be hard

Figure: The series at zero and ps.
e 1963. Fettis first rigorously established nonlinearity. A few more
residues yield ps(z) = 0.329934  + 0.00661673 23 +
0.000262333 ° + 0.0000141185 27 + O(x°)

CCARMA>

J.M. Borwein Mabhler Measures



19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

41. Derivative values of W3, Wy

17. Short Random Walks

W5 and ps: Bessel integrals can be hard

Figure: The series at zero and ps.
e 1963. Fettis first rigorously established nonlinearity. A few more
residues yield ps(z) = 0.329934  + 0.00661673 23 +
0.000262333 ° + 0.0000141185 27 + O(x°)

Hence the strikingly straight shape of ps(x) on [0,1] :

“the graphical construction, however carefully reinvestigated, did not per-
mit of our considering the curve to be anything but a straight line. . . Even
if it is not absolutely true, it exemplifies the extraordinary power of such
integrals of J products to give extremely close approximations to such|

simple forms as horizontal lines.” — Karl Pearson (1906) CARMA®
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

Short Random Walks: Derivatives of W3, Wy

From the hypergeometric forms above we get:

1 111
Wé(o) = ;3F2 2§2§2
2

i)-raE) o

The last equality follows from setting § = /6 in the identity

11
2sin(0)3Fy (2;2% sin? 0) =Cl(260) +260log(2sinb).
202

CCARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

Short Random Walks: Derivatives of W3, Wy

From the hypergeometric forms above we get:

1 111
Wé(o) = ;3F2 2§2§2
2

i)-raE) o

The last equality follows from setting § = /6 in the identity

111
2sin(0)3Fy (2;2%2 sin20> =Cl(260) +260log(2sinb).
202
Also L1
4 7777771 7C(3)
Wéi(o) = 724F3 (232323 ‘1> = o2 (16)
27272

Here C1(0) := 3 2 Sinn(;le) is Clausen’s function.

n=1

CCARMA>
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19. Combinatorics

25. Meijer-G functions

30. Hypergeometric values of W3, Wy
33. Probability and Bessel J

17. Short Random Walks

41. Derivative values of W3, Wy

Short Random Walks: Derivatives of W3, Wy

From the hypergeometric forms above we get:

1 L1l 1 I
Ws(0) = sl (23232 4> =2a(3) (15)
2

The last equality follows from setting § = /6 in the identity

111
2sin(0)3Fy (2;2%2 sin20> =Cl(260) +260log(2sinb).
202
Also L1
4 7777771 7C(3)
Wéi(o) = ﬁ4F3 (232323 ‘1> = o2 (16)
272

Here C1(0) := > o2 Sinn(;le) is Clausen’s function. Likewise:
: 3..(T\ 3V3 .
2 (2) = — 1(7) I S CCAR
W3(2) WC 3 o +2

=

A



43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Multiple Mahler Measures: for P, P, ..., P,

1 1 m
w(Py, Py, ..., Py) ;:/ / H10g|Pk <627ri91’.“ 7e2mt(9n) doy ---db,,
0 0 jiq
was introduced by Sasaki (2010); while
CCARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Multiple Mahler Measures: for P, P, ..., P,

M(P17P2 ..... / / H10g|P 27”91 271'1971) d@lden’
0

k=1
was introduced by Sasaki (2010); while

fm(P) == W(PP,...,P),  (m(P) = p(P))
is a higher Mahler measure as in Kurokawa, Lalin and Ochiai
(2008).

CCARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Multiple Mahler Measures: for P, P, ..., P,

dby ---db,,

/J(Pl, P, ..., / / H log |P 27”91 Ce 27"7971)
0

k=1
was introduced by Sasaki (2010); while

fm(P) == W(PP,...,P),  (m(P) = p(P))
is a higher Mahler measure as in Kurokawa, Lalin and Ochiai
(2008). Also

L (1 + ka> wim(0), (17)

was evaluated in (15), (16) forn =3 and n =4 and m = 1:

CCARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Multiple Mahler Measures: for P, P, ..., P,

dby ---db,,

M(Pl,PQ,...7 / / H10g|P 271't91 2777971)
0

k=1
was introduced by Sasaki (2010); while

fm(P) == W(PP,...,P),  (m(P) = p(P))
is a higher Mahler measure as in Kurokawa, Lalin and Ochiai
(2008). Also

L (1+ka>: wim(0), (17)

was evaluated in (15), (16) forn =3 and n =4 and m = 1:
© u(l+x+y) = Ly(~1) = 1 C1(5) (Smyth)

CCARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Multiple Mahler Measures: for P, P, ..., P,

dby ---db,,

M(Pl,PQ,...7 / / H10g|P 271't91 2777971)
0

k=1
was introduced by Sasaki (2010); while

fm(P) == W(PP,...,P),  (m(P) = p(P))
is a higher Mahler measure as in Kurokawa, Lalin and Ochiai
(2008). Also

L (1+ka>: wim(0), (17)

was evaluated in (15), (16) forn =3 and n =4 and m = 1:

© n(1+x+y) = Ly(~1) = 1 C1(5) (Smyth)

@ u(l+a+y+2)=14¢(-2) = T8 (Smyth) -
— So (17) recaptured both Smyth's results. CARMAS



43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Relations to Dedekind'’s 1

Denninger's 1997 conjecture, proven recently by Rogers and
Zudilin (2011), is

15
p(l+z+y+1/z+1/y) = 5 Le(2)

— an L-series value for an elliptic curve F with conductor 15.

CCARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Relations to Dedekind'’s 1

Denninger's 1997 conjecture, proven recently by Rogers and
Zudilin (2011), is

15
p(l+z+y+1/z+1/y) = 5 Le(2)

— an L-series value for an elliptic curve F with conductor 15.
e For (17) with n = 5,6 conjectures of Villegas become:

Wi(0) = (4W2)5/2/ (PP (e™™) + 0’ (e )P (e )} 3 dt
wio = (E) [T we e e e

where Dedekind's 7 is 7)(q) := ¢'/?* 32°° _ (—1)ngqn3n+D/4,

CCARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

Relations to Dedekind'’s 1

Denninger's 1997 conjecture, proven recently by Rogers and
Zudilin (2011), is

15
p(l+z+y+1/z+1/y) = 5 Le(2)

— an L-series value for an elliptic curve F with conductor 15.
e For (17) with n = 5,6 conjectures of Villegas become:

W.(0) = (4W2)5/2/ (PP (e™™) + 0’ (e )P (e )} 3 dt
3

T2

~

~)

wio = (E) [T we e e e

where Dedekind's 7 is 7)(q) := ¢'/?* 32°° _ (—1)ngqn3n+D/4,
e Confirmed to 600 (Sidi) and to 80 digits respectively. CARMA >
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

u(l + 2z +y) and pu(l + x + y + 2) revisited

We recall:

Lemma (Jensen’s formula)

1
/ log | + ™| dt = log (max{|c|,1}). (18)
0

We use (18) to reduce to a one dimensional integral:

5/6 ) 1 T 1 T
u1+a+y) = | , Toasinr) ay = 1 (§) = Lo (5).

which is (15).

J.M. Borwein Mahler Measures



43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

u(l+z+y) and pu(l + x + y + 2) revisited

Following Boyd, on applying Jensen's formula, for complex a and b
we have p(az +b) = log|a| V log|b|. Let w := y/z. We now write

,u(1+ar+y+z)—u1+x+z1+w)) p(log|1+w| Vlog |l + )

= / dﬂ/ max{log <281n9> logQ(siné)} dt
2 0

== 1 2sin —
= /0 d9/0 og( 81112) dt

= 2 0 log (2 sin 9) de
O 2

2
2 1 7¢B)
T2 Lsy (7)25?3

which is (16). CARWIA™>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd's Conjectures

48. A Bonus Measure

Boyd's 1998 Conjectures

Theorem (Two quadratic evaluations)

Below L_,, is a primitive L-series and G is Catalan’s constant.
2 2 2 2 16
ps = p(y (@ + 1) +y(@+6z+1)+ (z+1)°) = @L_‘*(Q)
_ 56
- 3r
9V3
pos = pP(z+ 1) +y(@? =10z + 1)+ (z + 1)%) = T\[ L_5(2)
20 i
= 7 %(3)
CCARMA>

J.M. Borwein Mahler Measures



43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd's Conjectures

48. A Bonus Measure

Log-sine Integrals are Again Inside

First proven in 2008 using Bloch-Wigner logarithms, we used a
variant of Jensen's formula and slick trigonometry to arrive at:

CARMA>
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd's Conjectures

48. A Bonus Measure

Log-sine Integrals are Again Inside

First proven in 2008 using Bloch-Wigner logarithms, we used a
variant of Jensen's formula and slick trigonometry to arrive at:

1 ™
U3 = / log(1 + 4| cos 0] + 4| cos? §]) df
T Jo

4 /2
=— / log(1 + 2cos @) db
0

™

4 (/2 2 sin 3¢

T Jo 281115

4 16 L_4(2
= — | Ls2 s —3Lso (E) :ﬁ 1(2)

37 2 2 3 T

as needed, since Lsy (27) = —Lsy (%) = L_4(2), which is
Catalan’s G.

J.M. Borwein Mahler Measures
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44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

And More

Much the same techniques work for us and there is one bonus case:
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43. Relations to 7

44. Smyth’s results revisited
41. Multiple Mahler Measures 46. Boyd’s Conjectures

48. A Bonus Measure

And More

Much the same techniques work for us and there is one bonus case:

mpoa = mp((@+1)2° +y+1) - 2zy)
1 (1 1) (1,}1,1 1) 1 (3 3) <§,§,1‘1
= B\, 7 )3k AT RS -
27 \4'4 35 |4 6 \4’4 5.7 |4
An alternative form of u_1 is given by
Mflzu((fc+1/x+2\/l/m) (y+1/y+1)—2>.
CCARMA>
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. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

. Conclusion

Sasaki's Multiple Mahler Measures

48. Log-sine Integrals

ur(l+z+y) =pl+zxz+y,1+z+y2,..., 1 +x+ yx)
was studied by Sasaki (2010). He used (18) to observe that

5/6 ,
pe(l+ 2+ y,) = —/ logk‘l—i—e%”‘ dt (19)
1/6

and so provides an evaluation of (1 + = + ys).

J.M. Borwein Mahler Measures



49. Sasaki's Mahler Measures
52. Log-sine-cosine integrals
. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Sasaki's Multiple Mahler Measures

ur(l+z+y) =pl+zxz+y,1+z+y2,..., 1 +x+ yx)
was studied by Sasaki (2010). He used (18) to observe that

5/6 A
pe(1+ 2 +7.) = —/ log" |1+ ¢*™| dt (19)
1/6

and so provides an evaluation of ua(1 + = + y.). Immediately from
(19) and the definition of the log-sine integrals we have:

Theorem (For k =1,2,...)

pe(l+ 2 +y.) = % {Lsk+1 (g) — Lsg 41 (W)} , (20)

where Lisyy1 is as given by (1). WA

J.M. Borwein Mahler Measures



49. Sasaki's Mahler Measures
52. Log-sine-cosine integrals
57. Three Cognate Evaluations
59. KLO’s Mahler Measures
63. Conclusion

48. Log-sine Integrals

Lsy, (7) and Ls™ (x)

Example (Values of Ls,, (1))

For instance, we have Lsy (7) = 0 as well as
—Lsg (7) = 1 73 Lsy (7) = §7T ¢(3)
12 2
s (1) = 21% w5 Lsg(m) = 4?5 () + Z ¢(3)
—Lsy (m) = 123—745217774- 4?5778(3) |

J.M. Borwein Mahler Measures



. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

. Conclusion

48. Log-sine Integrals

Ls, (m) and Ls®) ()

Equation (21) is made for a CAS (Mma, Sage or Maple):
for k to 7 do

simplify(subs(x=0,diff (Pi*binomial (x,x/2),x$k))) od

CCARMA>
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. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

. Conclusion

48. Log-sine Integrals

Ls, (m) and Ls®) ()

Equation (21) is made for a CAS (Mma, Sage or Maple):
for k to 7 do
simplify(subs(x=0,diff (Pi*binomial (x,x/2),x$k))) od
We studied general log-sine evaluations with an emphasis on
automatic provable evaluations. For example:

Theorem (Borwein-Straub)

For 2|p| < A <1 we have

A" (lﬂ)k . A (_1)neiﬂ'
Z L n+k+1 ) n| k' =1 Z
n,k>0 n>0

— e”rp“

J.M. Borwein Mahler Measures



. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Log-sine-cosine integrals

The log-sine-cosine integrals

0
2 sin —

1 n—1
2| %8

Lscympn (0) == —/ log™ 1
0

2 cos g‘ dg (22)

appear in QFT /physical applications as well.

CARMA>
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. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Log-sine-cosine integrals

The log-sine-cosine integrals

0
2 sin —

1 n—1
2| %8

Lscympn (0) == —/ log™ 1
0

2 cos g‘ dg (22)

appear in QFT /physical applications as well. Lewin sketches how
values at ¢ = m may be obtained much as for log-sine integrals.

CARMA>
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. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Log-sine-cosine integrals

The log-sine-cosine integrals

Lscympn (0) == —/ log™ 1 log" ™!
0

0
2 sin —
2

2 cos g‘ dg (22)

appear in QFT /physical applications as well. Lewin sketches how
values at ¢ = m may be obtained much as for log-sine integrals.
e Lewin's ideas lead to:

CCARMA>
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. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Log-sine-cosine integrals

The log-sine-cosine integrals

7 0
Lscympn (0) == —/ log™ 1 |2 sin5 log"t
0

2 cos g‘ dg (22)

appear in QFT /physical applications as well. Lewin sketches how
values at ¢ = m may be obtained much as for log-sine integrals.
e Lewin's ideas lead to:

= (%) (. )F(H%)F +4)

x/2) \y/2

e The last form makes it clear that this is an extension of (21). ~“™*~

J.M. Borwein Mahler Measures



. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

. Conclusion

Ls*¥) (1) is Made of Sterner Stuff.

48. Log-sine Integrals

e Contour integration and “polylogarithmics” yield:

Theorem (Reduction Theorem for 0 < 7 < 27 )
For n, k such that n — k > 2, we have

(—iT)d
j!

k—2
¢k, {13™) = >
=0 7

- (&1:'1 (E:);! P> (njl) (;) (%) (=m)" LY L (-

=0 m=0

Lij_j (13n (e’7)

where Lisj,_; (1yn-k-2(e'T) is a harmonic polylogarithm and
C(n — k,{1}*) is an Euler-Zagier sum.

’

CCARMA>
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. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

. Conclusion

48. Log-sine Integrals

Ls{ (%): A small miracle occurs: e~'3

The Reduction Theorem now lets us find all values of Ls™ (%)
and so of px(1 4+ =+ ys):

Example (Values of Ls, (7/3))

() -n() (D1
Los (3) = 5m¢(3) + 5 014(3)
~Lss (5) = 119544430 —66L, (3)
Lss (1) = 2m¢(8) + o0 3¢(3) + Lo Cls (7
Lo (1) = 109 7 %Wc(g) ~ 135G, (5) .

J.M. Borwein Mahler Measures
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48. Log-sine Integrals 5
g b . Conclusion

A Result for General 7

e An illustration of results produced by our programs:
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. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

A Result for General 7

e An illustration of results produced by our programs:

Example (For 0 < 7 < 27)

Ls{’ (1) = 20(3,1) —2Gly; (7) - 27 Gl (7)

iLSf) (1) — %w Ls:(f) (1) + iﬂQ Lsgl) (1)

1
= @71’4 —2Gl3; (1) — 27 Glp (1)
— i'r4 aF 17T7'3 — 17r27'2.

16 6 8

CCARMA>
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. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Irreducibility and Binomial Sums

Example (The first presumably irreducible value for 7/3)

T l nm
Gl (5) = Zz =2k sin ()
_ 3341 7r5——C2 3 —
1632960 e —
while always
L), () = il S S
3 SRR

CCARMA>
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Irreducibility and Binomial Sums

Example (The first presumably irreducible value for 7/3)

T l nm
Gl (5) = Zz =2k sin ()
_ 3341 7r5——C2 3 —
1632960 e —
while always
L), () = il S S
3 SRR

e Alternating binomial sums come from imaginary values of 7
i i i CCARMA>
via log sinh integrals at p = ”T\/s CARMIA
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48. Log-sine Integrals 63. Conclusion

First Evaluation
Let

pe(l+ 2+ ye+z) == p(l+z+y1 + 21, ., L+ 2+ yp + 25).
(23)

For all positive integers k, we have

1 T 0 k
M’f(1+$+y*+z*):_ﬂ,k+1/o <910g (251112) —012(9)) d
Then

2 ..M 7¢(3)
M1(1+x+y*+z*):—ﬁLs3 (77):5?,

1 2) 2 4 . 7T 4
p2(1+ 2+ yu + 24) 3 s5 (m) + 90 2 iz1(—1) + 3607T gum—
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Two More Evaluations: with Kummer-type logarithms

n

() log" || +

log" |z,

(=D"

so that

M () =log2, X (§)=§<<2>, X () = £ ¢3),

and M\ (%) is the first to reveal the presence of Li, (%) From the
value of T, (0) we derive:

T
M2(1+$+y+z):p)‘4(%)_§
p(l+z,14+2 1+x+y+z):—4 )\5(1)—§C(3) o1 ¢(5)- |w
’ ’ 3r2 U\ 4 1672 e
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KLO’s Mahler Measures

For complex |s| < 2, we may write

5\2 s+2 s+2 s+42
ZM 1+x+y)£—\/§38+17m1+5) 353 R E
2/ T on T(s +2) 1,53 |4
(24)
1+s 1+ 2,142 | 22
V3 (3 5+1/1Z+2F1< 1 24>d
= — | = Z.
T \2 0 V1 — 22
CCARMA™
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48. Log-sine Integrals

Evaluation of u,(1 + x + y) Requires a Taylor Expansion

Consider

e42 ef2 e42y 0o
sFy | 27202 1 > ae™ (25)

Indeed, from (24) and Leibnitz' rule we have

k=0
where [, is defined by

Note, as above, that S is easy to compute. CCARMA=
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Faa di Bruno's Formula

We can now read off the terms a,, of the e-expansion:
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Faa di Bruno's Formula

Let Ay ;=21 220"l Then

m=2 mk

5J2r2 6J2r2 5J2rQ 1 00 2 1 n AZLI»
n ) Y _ _1\n = »J
[€"] 3 F 1,58 vl (1) Z;j %) Z U gk
Jj= J k=1
(27)

where we sum over all mq, ..., m, with mi + 2mso + ...+ nm,, = n.
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Faa di Bruno's Formula

Let Ay := Y01 2071 Then

m=2

e+2 e42 5+2 1

n 9 ) 710021
R Lt j7) = (D ng)zgm

where we sum over all mq, ..., m, with mi + 2mso + ...+ nm,, = n.

Equation (27) follows from (24) on using Faa di Bruno's formula for the
n-th derivative of the composition on two functions via Pochhammer \
notation. O
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Davydychev and Kalmykov's Binomial Sums Yield:
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Davydychev and Kalmykov's Binomial Sums Yield:

3 27
wm(l+z+y) = %LSQ ( 3 )

3 27 72
pe(l+z+y) = ;LSS (3> JFZ

6 2m 9 s m s 1
ma(l+a+y) = —Lss (3) -0 (3) -0 (5) 5@
As we had obtained by other methods.
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Davydychev and Kalmykov's Binomial Sums Yield:

3 2
pi(l+z+y) = 27TLS2<;->
3 2m w2
pe(l+z+y) = WL53(3>+4
72 6 2m 9 s
ml+zty) = WLM(g)‘WCM(g)—%( )~ 5@

As we had obtained by other methods. Also PSLQ then finds:

or\ 49 2
mus(l+a+y) = 12Lss ( ;) -5 Lss (g) +81Gly (;)

+ 372Glyy (?) +20(3 )012( )+l (2

3
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Conclusion

We also have generalized arctangent forms, such as:

24 (1 2log 3 m\  log?3 1972
1 =Ty (= |+ 2282l (f)_ -
pe(l+aty) == 13<\/§>+ r 2\3 10 180
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Conclusion

We also have generalized arctangent forms, such as:

24 (1 2log 3 m\  log?3 1972
1 = Tiy (—= 010)— -
Ha(l+a+y) m—”<v§>+ r 2\3)7 710 180

@ We are still hunting for a complete accounting of
pin(1+ 2 + ).
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Conclusion

We also have generalized arctangent forms, such as:

24 (1 2log 3 m\  log?3 1972
1 = Tiy (—= cl (7)_ -
pe(l+aty) == 13<\/§>+ r 2\3)7 710 180

@ We are still hunting for a complete accounting of
pn(1+2z+1y).

® Our log-sine and MZV algorithms uncovered many errors and
gaps (e.g., values of Euler sums such as {(2n + 11) in terms
of Ls;i”_g) (7)) in the literature.

CCARMA>

J.M. Borwein Mabhler Measures



. Sasaki’s Mahler Measures
. Log-sine-cosine integrals

. Three Cognate Evaluations
. KLO’s Mahler Measures

48. Log-sine Integrals 5
g b . Conclusion

Conclusion

We also have generalized arctangent forms, such as:

24 (1 2log 3 m\  log?3 1972
1 = Tiy (—= cl (7)_ -
pe(l+aty) == 13<\/§>+ r 2\3)7 710 180

@ We are still hunting for a complete accounting of
pn(1+2z+1y).

® Our log-sine and MZV algorithms uncovered many errors and
gaps (e.g., values of Euler sums such as {(2n + 11) in terms
of Ls;i”_g) (7)) in the literature.

© Automated simplification, validation and correction tools are
more and more important.
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Conclusion

We also have generalized arctangent forms, such as:

24 (1 2log 3 m\  log?3 1972
1 = Tiy (—= cl (7)_ -
pe(l+aty) == 13<\/§>+ r 2\3)7 710 180

@ We are still hunting for a complete accounting of
pn(1+2z+1y).

® Our log-sine and MZV algorithms uncovered many errors and
gaps (e.g., values of Euler sums such as {(2n + 11) in terms

of Ls;i”_g) (7)) in the literature.

© Automated simplification, validation and correction tools are
more and more important.
O Thank you! CCARMIAS
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Postscript: 72 base 2

Base-64 digits of m> beginning at position 10 trillion. The first run,
which produced base-64 digits starting from position 1012 — 1,
required an average of 253,529 seconds per thread, subdivided into
seven partitions of 2048 threads each, so the total cost was

7 -2048 - 253529 = 3.6 x 10? CPU-seconds. Each rack of the IBM
Blue Gene P system features 4096 cores, so the total cost is 10.3
“rack-days.” The second run, which produced base-64 digits
starting from position 10'2, took the same time (within a few
minutes). The two resulting base-8 digit strings are

75/60114505303236475724500005743262754530363052416350634|573227604

2x]60114505303236475724500005743262754530363052416350634[220210566

(each pair of base-8 digits corresponds to a base-64 digit). Here
the digits in agreement are delimited by |. Note that 53
consecutive base-8 digits (159 binary digits) are in agreement.
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72 base three

Base-729 digits of m beginning at position 10 trillion. Now the
two runs each required an average of 795,773 seconds per thread,
similarly subdivided as above, so that the total cost was 6.5 x 10°

CPU-seconds, or 18.4 “rack-days” for each run.
The two resulting base-9 digit strings are

001]12264485064548583177111135210162856048323453468|10565567635862

xxx|12264485064548583177111135210162856048323453468|04 744867134524

(each triplet of base-9 digits corresponds to one base-729 digit).
Note here that 47 consecutive base-9 digits (94 base-3 digits) are
in agreement.
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